RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Nonlinear Equivalent Input Disturbance Coordinated Control for Enhancing the Stability of Hydraulic Generator System

        Lan‑Mei Cong,Xiao‑Cong Li 대한전기학회 2020 Journal of Electrical Engineering & Technology Vol.15 No.2

        Hydraulic generator plays more important roles as a renewable clean energy in improving stability. As hydraulic generator enjoys strong nonlinear properties, traditional linearized control method may holds worse adaptability for vary disturbances. In order to solve the problem, a Nonlinear Equivalent Input Disturbance Coordinated Control (NEIDCC) method is proposed in this paper. The objective functions related to system control performance are frstly determined. Then the multi-objective equations satisfying the Brunovsky normal form are derived, by which the nonlinear control problem is transformed to linear space to be solved. The nonlinear equivalent control law is obtained from the linear law by calculating the Γ derivative of the objective functions. When the system is subjected to diferent disturbances, the designed NEIDCC control law supports dynamic damping by observing the disturbance to stabilize the oscillations. As a result, the control system holds good performance. The simulation results of the designed hydraulic turbine generator control system demonstrate the efectiveness of the NEIDCC method.

      • KCI등재

        Genome-wide identification and evolution of TC1/Mariner in the silkworm (Bombyx mori) genome

        Li‑Qin Xie,Ping‑Lan Wang,Shen‑Hua Jiang,Ze Zhang,Hua‑Hao Zhang 한국유전학회 2018 Genes & Genomics Vol.40 No.5

        TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated “cut and paste” mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.

      • Sustained electron tunneling at unbiased metal-insulator-semiconductor triboelectric contacts

        Liu, Jun,Miao, Mengmeng,Jiang, Keren,Khan, Faheem,Goswami, Ankur,McGee, Ryan,Li, Zhi,Nguyen, Lan,Hu, Zhiyu,Lee, Jungchul,Cadien, Ken,Thundat, Thomas Elsevier 2018 Nano energy Vol.48 No.-

        <P><B>Abstract</B></P> <P>Generating sufficient current density for powering electronic devices remains as one of the critical challenges of mechanical energy harvesting techniques based on piezo and triboelectricity, mainly due to the high impedance of the insulating material systems. Here we report on producing sustainable tunneling current using an unbiased, triboelectrically charged metal-insulator-semiconductor (MIS) point contact system, consisting of p-type silicon, silicon oxide and a metal tip. The native thin oxide (~ 1.6 nm) on the silicon surface provides a natural pathway for quantum mechanical tunneling of the triboelectrically generated electrons into the silicon substrate. Lateral back and forth sliding motion of the tip, irrespective of the direction of motion, generates a constant direct current (d.c.) with very high current density. The measured current shows an exponential decay with the thickness of oxide layer deposited with atomic layer deposition (ALD), confirming the quantum mechanical tunneling mechanism. It is proposed that the contact potential difference enhanced by triboelectric charging provides potential difference between metal point contact and the substrate. With single metallic micro probe sliding on a moderately doped p-type silicon, an open circuit voltage (<I>V</I> <SUB>oc</SUB>) of 300–400 mV and a short-circuit direct current (<I>I</I> <SUB>sc</SUB>) of 3–5 μA (a corresponding high current density, <I>J</I>, in the order of 1–10 A/m<SUP>2</SUP>) have been observed. It is predicted from conductive-atomic force microscopy (C-AFM) experiment that the theoretical <I>J</I> can be as high as 10<SUP>4</SUP> A/m<SUP>2</SUP>. This new concept has the potential as a green energy harvesting technique where a broad range of material candidates and device configurations could be used.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Quantum mechanical tunneling at triboelectrically charged interface through ultrathin oxide layer is demonstrated. </LI> <LI> Tribo-tunneling is found to be a universal phenomenon in MIS frictional contact system. </LI> <LI> High current density <I>J</I> of 5 A/m<SUP>2</SUP> is experimentally measured in doped silicon materials at macroscale. </LI> <LI> Ultrahigh C-AFM <I>J</I> of 10<SUP>4</SUP> A/m<SUP>2</SUP> is observed due to the nano-size probe-induced high electric field. </LI> <LI> This method can be used as cost-effective triboelectric DC current generator, due to easily available silicon wafers with native oxide. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        The triply periodic minimal surface-based 3D printed engineering scaffold for meniscus function reconstruction

        Lan Li,Peng Wang,Jing Jin,Chunmei Xie,Bin Xue,Jiancheng Lai,Liya Zhu,Qing Jiang 한국생체재료학회 2022 생체재료학회지 Vol.26 No.4

        Background: The meniscus injury is a common disease in the area of sports medicine. The main treatment for this disease is the pain relief, rather than the meniscal function recovery. It may lead to a poor prognosis and accelerate the progression of osteoarthritis. In this study, we designed a meniscal scaffold to achieve the purposes of meniscal function recovery and cartilage protection. Methods: The meniscal scaffold was designed using the triply periodic minimal surface (TPMS) method. The scaffold was simulated as a three-dimensional (3D) intact knee model using a finite element analysis software to obtain the results of different mechanical tests. The mechanical properties were gained through the universal machine. Finally, an in vivo model was established to evaluate the effects of the TPMS-based meniscal scaffold on the cartilage protection. The radiography and histological examinations were performed to assess the cartilage and bony structures. Different regions of the regenerated meniscus were tested using the universal machine to assess the biomechanical functions. Results: The TPMS-based meniscal scaffold with a larger volume fraction and a longer functional periodicity demonstrated a better mechanical performance, and the load transmission and stress distribution were closer to the native biomechanical environment. The radiographic images and histological results of the TPMS group exhibited a better performance in terms of cartilage protection than the grid group. The regenerated meniscus in the TPMS group also had similar mechanical properties to the native meniscus. Conclusion: The TPMS method can affect the mechanical properties by adjusting the volume fraction and functional periodicity. The TPMS-based meniscal scaffold showed appropriate features for meniscal regeneration and cartilage protection.

      • KCI등재

        Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

        Li-Juan Li,Lan Zeng,Shun-De Xu,Yong-Chang Guo 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.19 No.4

        In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

      • KCI등재

        cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria

        Li-qun Peng,Ping Li,Qiu-li Zhang,Lan Hong,Li-ping Liu,Xun Cui,Bai-ri Cui 대한생리학회-대한약리학회 2016 The Korean Journal of Physiology & Pharmacology Vol.20 No.1

        Adenosine 3 ,5 -cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the Na<sup>+</sup>-K<sup>+</sup>-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain (3.0 μmol/L) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabainincreased atrial dynamics was blocked by KB-R7943 (3.0 μmol/L), an inhibitor for reverse mode of Na<sup>+</sup>-Ca<sup>2+</sup> exchangers (NCX), but did not by L-type Ca<sup>2+</sup> channel blocker nifedipine (1.0 μmol/L) or protein kinase A (PKA) selective inhibitor H-89 (3.0 μmol/L). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline (100.0 μmol/L), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP (0.5 μmol/L) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 (30 μmol/L), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.

      • KCI등재

        Effect of ionizing radiation at low dose on transgenerational carcinogenesis by epigenetic regulation

        Lan Li,김종현,박희태,이재훈,박민구,이지원,이정찬,이민재 한국실험동물학회 2017 Laboratory Animal Research Vol.33 No.2

        The objective of this study was to determine the effect of ionizing radiation (IR) exposure of parents on carcinogenesis of the next generation focusing on the epigenetic perspective to clarify the relationship between radiation dose and carcinogenesis in F1 generation SD rats. F1 generations from pregnant rats (F0) who were exposed to gamma rays were divided into three groups according to the dose of radiation: 10 rad, 30 rad, and untreated. They were intraperitoneally injected with 50 mg/kg of diethylnitrosamine (DEN). Carcinogenesis was analyzed by examining expression levels of tumor suppressor genes (TSG) and other related genes by methylation-specific polymerase chain reaction (MSP). DNA methylation in liver tissues was evaluated to discern epigenetic regulation of transgenerational carcinogenesis vulnerability following IR exposure. Numerous studies have proved that transcriptional inactivation due to hypermethylation of TSG preceded carcinogenesis. Results of this study revealed hypermethylation of tumor suppressor gene SOCS1 in group treated with 30 rad. In addition, genes related to DNA damage response pathway (GSTP1, ATM, DGKA, PARP1, and SIRT6) were epigenetically inactivated in all DEN treated groups. In the case of proto-oncogene c-Myc, DNA hypermethylation was identified in the group with low dose of IR (10 rad). Results of this study indicated that each TSG had different radiation threshold level (dose-independent way) and DEN treatment could affect DNA methylation profile irrelevant of ionizing radiation dose.

      • KCI등재

        Genetic Profiles Associated with Chemoresistance in Patient-Derived Xenograft Models of Ovarian Cancer

        Lan Ying Li,김희정,박선애,이소현,김이경,이정윤,김성훈,김영태,김상운,남은지 대한암학회 2019 Cancer Research and Treatment Vol.51 No.3

        Purpose Recurrence and chemoresistance (CR) are the leading causes of death in patients with highgrade serous carcinoma (HGSC) of the ovary. The aim of this study was to identify genetic changes associated with CR mechanisms using a patient-derived xenograft (PDX) mouse model and genetic sequencing. Materials and Methods To generate a CR HGSC PDX tumor, mice bearing subcutaneously implanted HGSC PDX tumors were treated with paclitaxel and carboplatin. We compared gene expression and mutations between chemosensitive (CS) and CR PDX tumors with whole exome and RNA sequencing and selected candidate genes. Correlations between candidate gene expression and clinicopathological variables were explored using the Cancer Genome Atlas (TCGA) database and the Human Protein Atlas (THPA). Results Three CR and four CS HGSC PDX tumor models were successfully established. RNA sequencing analysis of the PDX tumors revealed that 146 genes were significantly up-regulated and 54 genes down-regulated in the CR group compared with the CS group. Whole exome sequencing analysis showed 39 mutation sites were identified which only occurred in CR group. Differential expression of SAP25, HLA-DPA1, AKT3, and PIK3R5 genes and mutation of TMEM205 and POLR2A may have important functions in the progression of ovarian cancer chemoresistance. According to TCGA data analysis, patients with high HLADPA1 expression were more resistant to initial chemotherapy (p=0.030; odds ratio, 1.845). Conclusion We successfully established CR ovarian cancer PDX mouse models. PDX-based genetic profiling study could be used to select some candidate genes that could be targeted to overcome chemoresistance of ovarian cancer.

      • KCI등재

        Serum from pregnant women with gestational diabetes mellitus increases the expression of FABP4 mRNA in primary subcutaneous human pre-adipocytes

        Lan Li,이세진,국송이,안태규,이지연,황종윤 대한산부인과학회 2017 Obstetrics & Gynecology Science Vol.60 No.3

        ObjectiveGestational diabetes mellitus (GDM) is defined as glucose intolerance first detected during pregnancy. It can result in pregnancy complications such as birth injury, stillbirth. Fatty acid-binding protein 4 (FABP4), found in adipose tissue, is associated with insulin resistance, and type 2 diabetes. The aim of this study was to investigate whether FABP4 in the placenta and decidua of pregnant women with GDM is higher than that in normal pregnant women, and whether serum from pregnant women with GDM may cause adipocytes to secrete more FABP4 than does serum from a normal pregnant group. MethodsWe obtained placentas, deciduas, and serum from 12 pregnant women with GDM and 12 normal pregnant women and performed enzyme-linked immunosorbent assay, real time quantitative-polymerase chain reaction. We cultured human pre-adipocytes for 17 days with GDM and non-GDM serum and performed western blot, real time quantitative-polymerase chain reaction, and oil red O staining. ResultsExpression of FABP4 in serum, placenta and decidua of pregnant women with GDM was significantly higher than that in normal pregnant women. Serum from pregnant women with GDM increased the expression of FABP4 mRNA and decreased the expression of adiponectin mRNA in human pre-adipocytes significantly. Adipocyte cultured in GDM serum showed significantly greater lipid accumulation than those cultured in normal serum. ConclusionOur results suggest that FABP4 is higher in placenta and decidua from pregnant women with GDM. Increased circulating FABP4 in maternal serum from pregnant women with GDM may originate from adipocytes and the placenta. Circulating FABP4 can induce increased insulin resistance and decreased insulin sensitivity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼