RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Fuzzy methodology application for modeling uncertainties in chloride ingress models of RC building structure

        도정윤,송훈,소승영,소양섭 사단법인 한국계산역학회 2005 Computers and Concrete, An International Journal Vol.2 No.4

        Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to chloride-induced corrosion environment. In this work, RILEM model formula and Crank뭩 solution of Fick뭩 second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters instead of random variables of probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

      • KCI등재

        Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

        이득행,박민국,오재율,김강수,임주혁,서수연 사단법인 한국계산역학회 2014 Computers and Concrete, An International Journal Vol.14 No.3

        Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

      • KCI등재후보

        Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

        Bang Yeon Lee,김진근,김윤용 사단법인 한국계산역학회 2010 Computers and Concrete, An International Journal Vol.7 No.5

        This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

      • KCI등재후보

        Structural optimization and proposition of pre-sizing parameters for beams in reinforced concrete buildings

        Guilherme Fleith de Medeiros,Moacir Kripka 사단법인 한국계산역학회 2013 Computers and Concrete, An International Journal Vol.11 No.3

        The aim of the present paper is to show the application of optimization strategies for the cost of beams in reinforced concrete buildings and to propose pre-sizing parameters. In order for these goals to be met, an optimization software program was developed. The program combines the analysis of structures by the grid model, reinforced concrete sizing, and the simulated annealing optimization heuristic. Sizing is compliant with the NBR 6118 (2007) Brazilian standard, according to which flexural, shearing, torsion, and web reinforcements and serviceability limit states (deflection and crack width limitation) are checked. Besides the dimensions of the situations mentioned above, the influence the cost of each material (steel, concrete and formwork) has on the overall cost of structures was also determined.

      • KCI등재

        A damage model predicting moderate temperature and size effects on concrete in compression

        Wiem Ben Hassine,Marwa Loukil,Oualid Limam 사단법인 한국계산역학회 2019 Computers and Concrete, An International Journal Vol.23 No.5

        Experimental isotherm compressive tests show that concrete behaviour is dependent on temperature. The aim of such tests is to reproduce how concrete will behave under environmental changes within a moderate range of temperature. In this paper, a novel constitutive elastic damage behaviour law is proposed based on a free energy with an apparent damage depending on temperature. The proposed constitutive behaviour leads to classical theory of thermo-elasticity at small strains. Fixed elastic mechanical characteristics and fixed evolution law of damage independent of temperature and the material volume element size are considered. This approach is applied to compressive tests. The model predicts compressive strength and secant modulus of elasticity decrease as temperature increases. A power scaling law is assumed for specific entropy as function of the specimen size which leads to a volume size effect on the stress-strain compressive behaviour. The proposed model reproduces theoretical and experimental results from literature for tempertaures ranging between 20°C and 70°C. The effect of the difference in the coefficient of thermal expansion between the mortar and coarse aggregates is also considered which gives a better agreement with FIB recommendations. It is shown that this effect is of a second order in the considered moderate range of temperature.

      • KCI등재

        A systematic method from influence line identification to damage detection: Application to RC bridges

        Zhi-Wei Chen,Weibiao Yang,Jun LI,Qifeng Cheng,Qinlin Cai 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.20 No.5

        Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.

      • KCI등재

        Unified equivalent frame method for post-tensioned flat plate slab structures

        최승호,이득행,오재열,김강수,이재연,이강석 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.20 No.6

        The post-tensioned (PT) flat plate slab system is commonly used in practice, and this simple and fast construction method is also considered to be a very efficient method because it can provide excellent deflection and crack control performance under a service load condition and consequently can be advantageous when applying to long-span structures. However, a detailed design guideline for evaluating the lateral behavior of the PT flat plate slab system is not available in current design codes. Thus, typical design methods used for conventional reinforced concrete (RC) flat plate slab structures have inevitably been adopted in practice for the lateral load design of PT flat plate structures. In the authors’ previous studies, the unified equivalent frame method (UEFM) was proposed, which considers the combined effect of gravity and lateral loads for the lateral behavior analysis of RC flat plate slab structures. The aim of this study is to extend the concept of the UEFM to the lateral analysis of PT flat plate slab structures. In addition, the stiffness reduction factors of torsional members on interior and exterior equivalent frames were newly introduced considering the effect of post-tensioning. Test results of various PT flat plate slab-column connection specimens were collected from literature, and compared to the analysis results estimated by the extended UEFM.

      • KCI등재후보

        Modeling properties of self-compacting concrete: support vector machines approach

        Rafat Siddique,Paratibha Aggarwal,Yogesh Aggarwal,S. M. Gupta 사단법인 한국계산역학회 2008 Computers and Concrete, An International Journal Vol.5 No.5

        The paper explores the potential of Support Vector Machines (SVM) approach in predicting 28-day compressive strength and slump flow of self-compacting concrete. Total of 80 data collected from the exiting literature were used in present work. To compare the performance of the technique, prediction was also done using a back propagation neural network model. For this data-set, RBF kernel worked well in comparison to polynomial kernel based support vector machines and provide a root mean square error of 4.688 (MPa) (correlation coefficient=0.942) for 28-day compressive strength prediction and a root mean square error of 7.825 cm (correlation coefficient=0.931) for slump flow. Results obtained for RMSE and correlation coefficient suggested a comparable performance by Support Vector Machine approach to neural network approach for both 28-day compressive strength and slump flow prediction.

      • KCI등재후보

        Nonlinear analysis of service stresses in reinforced concrete sections-closed form solutions

        Helena F.M. Barros,Rogério A.F. Martins 사단법인 한국계산역학회 2012 Computers and Concrete, An International Journal Vol.10 No.5

        This paper presents an algorithm for the evaluation of stresses in reinforced concrete sections under service loads. The algorithm is applicable to any section defined by polygonal contours and is based on an analytical integration of the stresses. The nonlinear behaviour of concrete is represented by the parabola-rectangle law used in the Eurocode-2 for the ultimate concrete design. An integrated definition of the strains in concrete and steel is possible by the use of Heaviside functions, similarly to what is done for ultimate section design in Barros et al. (2004). Other constitutive equations for the definition of the stresses in the concrete or steel can be easily incorporated into the code. The examples presented consist in the evaluation of resulting axial load and bending moment in an irregular section and in a section in L shape. The results, for service stresses, can also be plotted in terms of design abacus; a rectangular doubly reinforced section is presented as example.

      • KCI등재후보

        Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete

        Khandaker M. Anwar Hossain 사단법인 한국계산역학회 2009 Computers and Concrete, An International Journal Vol.6 No.6

        The effect of six different curing conditions on compressive strength and ultrasonic pulse velocity (UPV) of volcanic pumice concrete (VPC) and normal concrete (NC) has been studied. The curing conditions include water, air, low temperature (4℃) and different elevated temperatures of up to 110℃. The curing age varies from 3 days to 91 days. The development in the pulse velocity and the compressive strength is found to be higher in full water curing than the other curing conditions. The reduction of pulse velocity and compressive strength is more in high temperature curing conditions and also more in VPC compared to NC. Curing conditions affect the relationship between pulse velocity and compressive strength of both VPC and NC.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼