RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system

        Honglin Luo,Haiyong Ao,Gen Li,Wei Li,Guangyao Xiong,Yong Zhu,Yizao Wan 한국물리학회 2017 Current Applied Physics Vol.17 No.2

        Graphene-based nanocarriers not only possess large specific surface area but also prevent drugs from premature release outside the target cells. However, agglomeration in aqueous solution is a critical challenge. In this work, graphene oxide (GO) was uniformly embedded into the three-dimensional (3D) porous network of bacterial cellulose (BC) to form a novel BC/GO nanocomposite drug nanocarrier. For the first time, ibuprofen (IBU) was loaded onto the BC/GO nanocomposites. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) reveal the successful drug loading onto BC/GO nanocomposites. In vitro drug release studies indicate that the drug release of IBU@BC/GO follows a non-Fickian diffusion mechanism. Another important feature of this BC/GO nanocarrier is its better cell viability in comparison to BC. It is believed that this new nanocarrier is a potential choice for drug delivery system.

      • KCI등재

        Synthesis, characterization and tribological performances of nano-CeO2/biodiesel carbon soot composites as a novel lubricant additive in polyalphaolefin

        Chuan Li,Xinxin Wang,Qiangqiang Zhang,Xu Tan,Yefeng Liu,Honglin Li,Hao Liu,Enzhu Hu,Xianguo Hu 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.126 No.-

        This study fabricated nano-CeO2/biodiesel carbon soot (BCS) composites using the raw material BCS,which is the byproduct of biodiesel combustion and cerium salt and used as a novel lubricant additiveto PAO6 for steel/steel contact. Oleylamine modified nano-CeO2/BCS composites comprise abundant lipophilicgroups, and thus nano-CeO2/BCS composites exhibit good dispersion in PAO6. The tribologicalresults showed that nano-CeO2/BCS composites significantly improved the lubricating performances ofPAO6. In case of 0.1 wt% nano-CeO2/BCS composites dispersed in PAO6, the friction coefficient and wearvolume were reduced by 17.3 and 35.2%, respectively. The improved tribological properties were attributedto the composites rolling and forming of a lubricating film on the friction surface and the presence ofBCS and CeO2 in composites exerting a synergistic lubricating effect, which simultaneously improved thetribological properties of PAO6. This discovery contributes to the conversion of BCS into valuables andpromotes the high value utilization of BCS as a lubricating additive.

      • KCI등재

        Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

        Bo-jiang Li,Ping-hua Li,Rui=hua Huang,Wen-xing Sun,Han Wang,Qi-fa Li,Jie Chen,Wang Jun Wu,Honglin Liu 아세아·태평양축산학회 2015 Animal Bioscience Vol.28 No.8

        The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

      • KCI등재

        Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering

        Guangyao Xiong,Yanjiao Nie,Dehui Ji,Jing Li,Chunzhi Li,Wei Li,Yong Zhu,Honglin Luo,Yizao Wan 한국물리학회 2016 Current Applied Physics Vol.16 No.8

        Microwave assisted sintering has attracted much attention due to the greatly reduced sintering time. In this work, for the first time, hydroxyapatite (HAp)-reinforced magnesium (Mg) composites were prepared by the microwave assisted sintering technique. The as-prepared HAp/Mg composites were characterized by mechanical and electrochemical tests, XRD analysis, and preliminary biological evaluation. Optical microscopy observation confirms the homogeneously distributed HAp particles in the Mg matrix. It is shown that the relative density of HAp/Mg composite with 10 wt% HAp can reach 96.5% after only 10 min microwave assisted sintering. Furthermore, the mechanical properties of HAp/Mg composites are significantly higher than those of pure Mg. The corrosion resistance of HAp/Mg composites evaluated by immersion and electrochemical measurements in simulated body fluid (SBF) at 37 C reveals significant improvement over pure Mg. It is demonstrated that the mechanical properties, corrosion resistance, and biological behavior can be properly controlled by adjusting HAp content.

      • KCI등재

        Changes in distribution and morphology of Tamarix ramosissima nebkhas in an oasis-desert ecotone

        Chaofan Li,Fan Yang,Xinqian Zheng,Zhangyong Han,Honglin Pan,Chenglong Zhou,Chunrong Ji 한국지질과학협의회 2021 Geosciences Journal Vol.25 No.5

        In the oasis-desert ecotone, nebkhas are of great importance for blocking the intrusion of shifting sand and maintaining the ecological security of oases. The morphological characteristics of nebkhas have been widely researched. However, their spatial distribution and morphological variation with the environment remain unclear. In this paper, we systematically analyzed the spatial distribution pattern, morphological changes, and potential indicative significance of Tamarix ramosissima nebkhas (that is, nebkhas formed around T. ramosissima) in a typical oasis-desert ecotone in Northwest China. Our results showed that the intensity of aeolian activities increased from the inside to the outside of the ecotone, and only T. ramosissima shrubs with high tolerance to aeolian activities could survive. Moreover, from the inside to the outside of the ecotone, the density of the T. ramosissima nebkhas decreased, their size increased, and spatial distribution shifted from aggregation to random. The T. ramosissima shrub can trap aeolian transport and protect nebkhas, leading to sand accumulation in the space between, and leeward edges of, the shrubs. Wind erosion mainly occurs to the windward side and along the sides of the nebkhas. Further, the protective effect of the shrub gradually increased with its growth in a year, resulting in the gradually changed of nebkha surface from wind erosion to sand accumulation, and the nebkha volume showed a fluctuating state of first decreasing and then increasing. This indicates that wind erosion and sand accumulation on the nebkha surface were closely related to the growth cycle of the shrub. In addition, nebkhas exhibited a spatial pattern of growth, inside of the ecotone, to degradation, outside of the ecotone. These results indicate that we should focus on the outside of the ecotone to ensure the ecological stability of oases.

      • KCI등재

        De novo genome assembly and annotation of Holothuria scabra (Jaeger, 1833) from nanopore sequencing reads

        Luo Honglin,Huang Guanghua,Li Jianbin,Yang Qiong,Zhu Jiajie,Zhang Bin,Feng Pengfei,Zhang Yongde,Yang Xueming 한국유전학회 2022 Genes & Genomics Vol.44 No.12

        Background: Holothuria scabra is a costly gourmet and traditional Chinese tonic medicine. However, the lack of high-quality genome information hinders the genetic, phylogenetic, and bioactivator researches. Objective: To construct high-quality genomic data of H. scabra and conduct genome-wide phylogenetic analysis. Methods: The whole genome of a male H. scabra was sequenced based on Nanopore MinION platform, and the sequence was assembled by wtdbg2. Transcriptome sequencing was used to aid the gene annotation. Repeat sequences, non-coding RNA, pseudogene and gene functional annotation were analyzed. 750 single-copy gene families from ten species were applied to construct phylogenetic tree for evolutionary analysis by using the ML method. Results: The H. scabra genome of 1.18 Gb (N50 = 1557,492 bp) with 500.42 Mb of putative repetitive sequences was assembled from a male H. scabra individual, and 16,642 protein-coding genes, 951 pseudogenes, 1791 motifs and 45,400 domains from the generated assembly were identified. The divergence time between H. scabra and its ancestor was estimated approximately 192.6 million years ago. H. scabra and A. japonicas joined together while sea urchin and sea star diverged about 440 Mya ago. Some key genes involved in notochord and gill slits development, skeleton degeneration and nervous system, as well as homeobox genes differ between H. scabra and Apostichopus japonicas. Conclusion: We report the first whole genome of H. scabra with expectation that this will be a valuable resource for genetic, phylogenetic, breading, molecular biology and bioactivator studies of sea cucumbers and other invertebrates.

      • KCI등재

        Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae

        Yingzi He,Honglin Mei,Huiqian Yu,Shan Sun,Wenli Ni,Huawei Li 생화학분자생물학회 2014 Experimental and molecular medicine Vol.46 No.-

        Histone deacetylases are involved in many biological processes and have roles in regulating cell behaviors such as cell cycle entry, cell proliferation and apoptosis. However, the effect of histone deacetylases on the development of hair cells (HCs) has not been fully elucidated. In this study, we examined the influence of histone deacetylases on the early development of neuromasts in the lateral line of zebrafish. Hair cell development was evaluated by fluorescent immunostaining in the absence or presence of histone deacetylase inhibitors. Our results suggested that pharmacological inhibition of histone deacetylases with inhibitors, including trichostatin A, valproic acid and MS-275, reduced the numbers of both HCs and supporting cells in neuromasts. We also found that the treatment of zebrafish larvae with inhibitors caused accumulation of histone acetylation and suppressed proliferation of neuromast cells. Real-time PCR results showed that the expression of both p21 and p27 mRNA was increased following trichostatin A treatment and the increase in p53 mRNA was modest under the same conditions. However, the expression of p53 mRNA was significantly increased by treatment with a high concentration of trichostatin A. A high concentration of trichostatin A also led to increased cell death in neuromasts as detected in a TUNEL assay. Moreover, the nuclei of most of these pyknotic cells were immunohistochemically positive for cleaved caspase-3. These results suggest that histone deacetylase activity is involved in lateral line development in the zebrafish and might have a role in neuromast formation by altering cell proliferation through the expression of cell cycle regulatory proteins.

      • KCI등재

        Simultaneously depositing polyaniline onto bacterial cellulose nanofibers and graphene nanosheets toward electrically conductive nanocomposites

        Yizao Wan,Jin Li,Zhiwei Yang,Haiyong Ao,Lingling Xiong,Honglin Luo 한국물리학회 2018 Current Applied Physics Vol.18 No.8

        In this study, we report the construction of a ternary flexible nanocomposite of bacterial cellulose/graphene/polyaniline (BC/GE/PANI) via a facile two-step strategy. Bacterial cellulose/graphene (BC/GE) is first prepared by a novel in situ membrane-liquid-interface method, in which the three-dimensional continuous BC nanofibers can be maintained and the introduced GE can improve the mechanical properties mainly due to the uniform dispersion of GE in the BC matrix. To construct the effectively interconnected conductive paths between separated GE nanosheets, polyaniline (PANI) is simultaneously deposited on the surfaces of both BC nanofibers and GE nanosheets to obtain BC/GE/PANI with excellent electrical conductivity. It is found that the as-prepared BC/GE/PANI has an electrical conductivity of 1.7 ± 0.1 S cm−1, which is higher than most of PANI-based composites. It is believed that the BC/GE/PANI nanocomposite possesses great potential for applications in electromagnetic shielding and flexible electrodes.

      • KCI등재

        Effective removal of phenol from wastewater by magnetic porous loofah biochar

        Shan Shirui,Wu Honglin,Yang Jian,Jiao Di,Huang Mengqin,Li Fu 한국탄소학회 2024 Carbon Letters Vol.34 No.1

        In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe3O4. The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model (R2 > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater. Graphical In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe3O4. The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model (R2 > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater. Graphical

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼