RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재
      • KCI등재

        Parametric Study of Water Inrush in a Tunnel Crossing a Fault based on the “Three Zones” fault structure

        Jing Wu,Xintong Wang,Li Wu,Ya-ni Lu,Yanhua Han 대한토목학회 2022 KSCE Journal of Civil Engineering Vol.26 No.8

        As tunnelling progresses into the complex geological environment such as fault zones, water inrush has become one of the main geological hazards during tunnel construction. Consequently, understanding the evolution of pore pressure and flow velocity when a tunnel is excavated in a fault zone is crucial to ensure safe working conditions and reduce construction risks. In this work, based on the concept of “Three Zones” fault structure, we simulate the nonlinear water inrush process by solving the Darcy-Brinkman flow equation for the host rock and the fault zone. We examine the impacts of 1) the angle between the tunnelling direction and the fault and 2) the relative position from the tunnel face to the fault on the evolution of pore pressure and flow velocity near the tunnel face. The results show that within 5 m to 20 m ahead of the working face, pore pressure, flow velocity, and water inrush rate are the smallest when the angle is 90°. As the angle decreases, both pore pressure and flow velocity ahead of the working face increase. The pore pressure is larger when the tunnel has not reached the fault zone than when the tunnel has crossed the fault zone. Flow velocity also exhibits similar behaviour as pore pressure. With different relative positions from the tunnel working face to the fault, the closer the tunnel face to the fault, the lower the pore pressure and the larger the flow velocity ahead of the tunnel face. The largest water inrush rate occurs when the tunnel face is excavated to the center of the fault core, and the water inrush rate declines as the distance away from the fault increases. The simulation results provided a new method for simulating water inrush when a tunnel crosses a fault and could provide valuable references for the prediction of water inrush for underground projects.

      • KCI등재

        Facile preparation of antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic polyvinylidene fluoride membranes for effective removal of rhodamine B

        Yanhua Cui,Lili Yang,Minjia Meng,Qi Zhang,Binrong Li,Yilin Wu,Yunlei Zhang,Jihui Lang,Chunxiang Li 한국화학공학회 2019 Korean Journal of Chemical Engineering Vol.36 No.2

        A simplified strategy for facilely fabricating antifouling graphite carbon nitride/silver phosphate (g-C3N4/ Ag3PO4) nanocomposite photocatalytic polyvinylidene fluoride (PVDF) porous membranes was developed for effective removal of rhodamine B (RhB). g-C3N4/Ag3PO4 heterojunction was strongly fixed to the interior of the PVDF membranes via phase inversion method. The membrane structure was analyzed by Fourier transform spectrophotometer (FT-IR). The morphology of the prepared membranes was investigated using scanning electron microscopy (SEM), EDX-mapping and atomic force microscopy (AFM), respectively. All prepared nanocomposite photocatalytic PVDF membranes exhibited a typically porous structure, and g-C3N4/Ag3PO4 nanocomposites were well dispersed inside the membranes. The obtained g-C3N4/Ag3PO4 heterojunction nanoparticle decorated PVDF membrane had a lower water contact angle of 79o and higher porosity of 85% than that of other two control membranes. The nanocomposite photocatalytic PVDF porous membranes had extremely high permeation flux over 1,083 L·m−2·h−1, and could be used for the removal of RhB. The removal efficiency of g-C3N4/Ag3PO4-PVDF membranes towards RhB solution under visible light irradiation reached 97%, higher than that of the pure PVDF membranes (41%) and g-C3N4-PVDF membranes (85%). Remarkably, the flux performance and flux recovery ratio (FRR) of membranes revealed that the g-C3N4/Ag3PO4- PVDF membranes could recover high flux after fouling, which presented better fouling resistance. Furthermore, the fabricated antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic PVDF porous membranes exhibited excellent recyclability. Therefore, it is expected that g-C3N4/Ag3PO4-PVDF membranes could provide an energy-saving strategy for effective removal of organic dyes wastewater and have a great potential for practical wastewater treatment in the future.

      • SCIEKCI등재

        vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

        Wu, Xia,Chi, Xiaoyan,Wang, Yanhua,Zhang, Kailu,Kai, Le,He, Qiuning,Tang, Jinxiu,Wang, Kewen,Sun, Longshuo,Hao, Xiuying,Xie, Weihai,Ge, Yihe The Korean Society of Plant Pathology 2019 Plant Pathology Journal Vol.35 No.4

        In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant $G05{\Delta}phz{\Delta}prn::lacZ$ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant $G05{\Delta}vfr$ and $G05{\Delta}phz{\Delta}prn::lacZ{\Delta}vfr$. By quantifying ${\beta}-galactosidase$ activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant $G05{\Delta}vfr$, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

      • KCI등재

        Transverse Flexural Behaviour of Steel-Engineering Cementitious Composites (ECC) Composite Deck under Negative and Positive Bending Forces

        Yanhua Guan,Jiajie Wu,Renjuan Sun,Hongzhi Zhang,Yanqiu Hu,Fei Wang 대한토목학회 2021 KSCE JOURNAL OF CIVIL ENGINEERING Vol.25 No.8

        Orthotropic steel bridge deck system usually consists of an orthotropic steel deck and an asphalt overlay. Fatigue cracks of the orthotropic steel deck and premature damage of the asphalt overlay are frequently reported for such system. Engineering cementitious composites (ECC) was therefore proposed to replace the asphalt overlay to address the aforementioned issues. The current study presents an investigation on the transversal flexural behaviour of the ECC under bending forces. Influence of the bending force direction, cover thickness, the number of longitudinal reinforcement steel bars on the flexural performance was revealed. Responses with regard to the load-deflection curve, failure mode, the ultimate capacity, the cracking behaviour, the interfacial slip between ECC and steel deck and the nominal cracking stresses were analysed. The results showed that the load-deflection response under both negative and positive bending forces exhibits elastic stage, crack-developing stage and yield stage. Compared with the reinforcement ratio, cover thickness plays a more significant role on the flexural performances. When the cover thickness decreases from 35 mm to 25 mm, the peak load increases by 21% − 25%. ECC maintains its feature of being ductile, with high tensile and compressive strain capacity in the composite slab. From the design point of view, reducing the cover thickness and increasing the reinforcement ratio can improve the ultimate load and cracking stress, and reduce the internal slip, strain and crack width of the composite slab. It is expected that the current study can provide basic knowledge to the design and application of the steel-ECC composite deck system.

      • KCI등재

        Resource Allocation for Relay-Aided Cooperative Systems Based on Multi-Objective Optimization

        ( Runze Wu ),( Jiajia Zhu ),( Hailin Hu ),( Yanhua He ),( Liangrui Tang ) 한국인터넷정보학회 2018 KSII Transactions on Internet and Information Syst Vol.12 No.5

        This paper studies resource allocation schemes for the relay-aided cooperative system consisting of multiple source-destination pairs and decode-forward (DF) relays. Specially, relaying selection, multisubcarrier pairing and assignment, and power allocation are investigated jointly. We consider a combinatorial optimization problem on quality of experience (QoE) and energy consumption based on relay-aided cooperative system. For providing better QoE and lower energy consumption we formulate a multi-objective optimization problem to maximize the total mean opinion score (MOS) value and minimize the total power consumption. To this end, we employ the nondominated sorting genetic algorithm version II (NSGA-II) and obtain sets of Pareto optimal solutions. Specially, two formulas are devised for the optimal solutions of the multi-objective optimization problems with and without a service priority constraint. Moreover, simulation results show that the proposed schemes are superior to the existing ones.

      • KCI등재

        vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

        Xia Wu,Xiaoyan Chi,Yanhua Wang,Kailu Zhang,Le Kai,Qiuning He,Jinxiu Tang,Kewen Wang,Longshuo Sun,Xiuying Hao,Weihai Xie,Yihe Ge 한국식물병리학회 2019 Plant Pathology Journal Vol.35 No.4

        In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant G05ΔphzΔprn::lacZ and E. coli S17- 1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant G05Δvfr and G05ΔphzΔprn::lacZΔvfr. By quantifying β-galactosidase activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant G05Δvfr, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

      • KCI등재

        NINJ1 triggers extravillous trophoblast cell dysfunction through blocking the STAT3 signaling pathway

        Zhang Xueluo,Chen Yanhua,Wang Xianping,Zhang Zhiping,Wang Jun,Shen Yan,Hu Yuanjing,Wu Xueqing 한국유전학회 2022 Genes & Genomics Vol.44 No.11

        Background: Trophoblasts are the most important parts of the placenta in early pregnancy. Trophoblast cell dysfunction can induce embryo implantation insufficiency, thereby resulting in multiple diseases, including recurrent spontaneous abortion (RSA). A previous study indicates higher nerve injury-induced protein 1 (NINJ1) RNA levels in the villi tissues of RSA patients. Objective: This study aimed to investigate the effect of NINJ1 on trophoblast behaviors and pregnancy loss. Methods: Fresh villi tissues were obtained from with RSA patients and patients with artificial selective abortion for personal reasons, and NINJ1 expression in these tissues was detected. Extravillous trophoblast cell line HTR-8/SVneo was transfected with small-interfering RNA targeting NINJ1 or NINJ1 overexpression vector to perform loss-/gain-of-function experiments. Spontaneous abortion (SA) was induced by mating CBA/J females with DBA/2 males and the pregnant females were intraperitoneally injected with adenovirus vector carrying NINJ1 short hairpin RNA. Results: NINJ1 mRNA and protein levels were higher in the villi tissues of RSA patients than those of artificial selective abortion patients. NINJ1 knockdown promoted trophoblast cell proliferation, migration and invasion but inhibited cell apoptosis. Moreover, conditioned medium from NINJ1-depleted trophoblasts promoted the angiogenesis of human umbilical vein endothelial cells. NINJ1 knockdown also promoted activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway in trophoblasts, and STAT3 inhibitor reversed NINJ1 knockdown-induced effects on trophoblast behaviors. Furthermore, pregnancy loss was attenuated by NINJ1 inhibition. Conclusion: NINJ1 contributes to the development of SA and triggers trophoblast cell dysfunction through inhibiting the STAT3 pathway.

      • KCI등재

        Impact of electrolyte additives (alkali metal salts) on the capacitive behavior of NiO-based capacitors

        Yong Zhang,Lizhen Wang,Aiqin Zhang,Yanhua Song,Xiaofeng Li,Xingbing Wu,Peipei Du,Lv Yan 한국화학공학회 2011 Korean Journal of Chemical Engineering Vol.28 No.2

        To improve the specific capacitance and energy density of electrochemical capacitor, nanostructured NiO was prepared by high temperature solid-state method as electrode material. The crystal structure and morphology of as-parepared NiO samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Cyclic voltammetry (CV) measurement was applied to investigate the specific capacitance of the NiO electrode. Furthermore,a novel mixed electrolyte consisting of NaOH, KOH, LiOH and Li_2CO_3 was prepared for the NiO capacitor,and the component and concentration of the four different electrolytes was examined by orthogonal test. The results showed that the NiO sample has cubic structure with nano-size particles, and the optimal composition of the electrolyte was: NaOH 2 mol L^(−1), KOH 3 mol L^(−1), LiOH 0.05 mol L^(−1), and Li_2CO_3 0.05 mol L^−1. At a scan rate of 10 mV s^(−1), the fabricated capacitor exhibits excellent electrochemical capacitive performance, while the specific capacitance and the energy density were 239 F g^(−1) and 85 Wh kg^(−1), which was higher than one-component electrolyte.

      • KCI등재

        BMB : Reports ; An inhibitory role of NEK6 in TGFβ/Smad signaling pathway

        ( Jie Zuo ),( Haijie Ma ),( Hao Cai ),( Yanhua Wu ),( Wei Jiang ),( Long Yu ) 생화학분자생물학회(구 한국생화학분자생물학회) 2015 BMB Reports Vol.48 No.8

        The NEK6 (NIMA-related kinases 6) is reported to play po-tential roles in tumorigenesis. Although it is suggested to function in several cellular pathways, the underlying mechanism in tumorigenesis is still largely unknown. In the present study, we discovered interaction of NEK6 with Smad4, a key member of transforming growth factor beta (TGFβ) pathway. Over-expression of NEK6 in hepatocellular carcinoma (HCC) cell lines suppresses TGFβ- mediated transcription activity in a kinase activity-dependent manner. In addition, NEK6 suppresses the cell growth arrest induced by TGFβ. Mechanically, NEK6 blocks nuclear translocation of Smad4, which is essential for TGF β function. Moreover, we identified that NEK6 could be regulated by TGFβ and hypoxia. Our study sheds new light on the roles of NEK6 in canonical TGFβ/Smad pathway and tum-origenesis. [BMB Reports 2015; 48(8): 473-478]

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼