RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        One-Pot Preparation of Antibacterial Electrospun Polycaprolactone Membrane Embedded with Gamma Irradiation-Induced Silver Nanoparticles

        Chien Minh Tran,Ngoc Thi‑Thanh Nguyen,Minh Hieu Ho,Vinh Khanh Doan,Khanh Loan Ly,Nhi Ngoc‑Thao Dang,Nam Minh‑Phuong Tran,Hoai Thi‑Thu Nguyen,Long Phuoc Truong,Thai Minh Do,Quyen Ngoc Tran,Hien Quoc Ng 한국섬유공학회 2023 Fibers and polymers Vol.24 No.1

        In this study, we proposed a straightforward electrospun polycaprolactone (PCL) loaded with silver nanoparticles (SNPs)membrane fabrication process, in which SNPs were directly synthesized from silver nitrate (AgNO3) in PCL–acetone mixtureby gamma irradiation. The insolubility of AgNO3in PCL solution was solved using an auxiliary dimethyl sulfoxide solvent. As a physical approach, gamma rays readily converted silver ions into SNPs without the addition of harmful reductionagents, which reduced the cytotoxicity of the synthesized material. By avoiding some processes such as purification, solventremoval, or redispersion of SNPs, this method was more time-saving compared to other related studies. SNPs formation wasconfirmed by both UV–Visible spectrum (UV–Vis) and X-ray diffraction analysis. Scanning electron microscopy (SEM)revealed that the addition of SNPs significantly reduced the fiber diameter of PCL–Ag membranes compared to that of rawPCL. Uniform spherical-shaped SNPs incorporated in PCL fibers were observed under transmission electron microscopy(TEM). The tensile test showed that the electrospun PCL–Ag membranes exhibited good mechanical characteristics. Moistureeasily penetrated the porous microstructure of PCL–Ag, facilitating wound humidity regulation. Inductively coupledplasma-mass spectroscopy (ICP-MS) was employed to study the release profiles of SNPs at different time intervals. Overall,the PCL–Ag 500 ppm sample exerted excellent antibacterial activity against Pseudomonas aeruginosa and Staphylococcusaureus strains and low in vitro cytotoxicity.

      • KCI등재

        First Report on Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Isolates in Children Admitted to Tertiary Hospitals in Vietnam

        ( Nguyen Thai Son ),( Vu Thi Thu Huong ),( Vu Thi Kim Lien ),( Do Thi Quynh Nga ),( Tran Thi Hai Au ),( Tang Thi Nga ),( Le Nguyen Minh Hoa ),( Tran Quang Binh ) 한국미생물생명공학회(구 한국산업미생물학회) 2019 Journal of microbiology and biotechnology Vol.29 No.9

        The extensive distribution of multidrug-resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) poses a threat to healthcare worldwide. This study aimed to investigate the MDR and molecular patterns of MRSA isolates in children admitted to the two biggest tertiary care pediatric hospitals in northern and southern Vietnam. A total of 168 MRSA strains were collected to determine antibiotic susceptibility by minimum inhibitory concentration tests. Antibiotic-resistant genes, pulsed-field gel electrophoresis, staphylococcal cassette chromosome mec (SCCmec) typing, and multilocus sequence typing were used for the molecular characterization of MRSA. Among the total strains, the MDR rate (51.8%) was significantly higher in the northern hospital than in the southern hospital (73% vs. 39%, p < 0.0001). The MDR-MRSA with the highest rates were “ciprofloxacin-erythromycin-gentamicin-tetracyclines” (35.6%), followed by “erythromycin-tetracycline-chloramphenicol” (24.1%), and “ciprofloxacin-erythromycin-gentamicin” (19.5%), showing an accumulative total of 79.3%. The most susceptible antibiotics were rifampicin (100%) and vancomycin (100%), followed by doxycycline (94.0%), meropenem (78.0%), and cefotaxime (75.0%). The SCCmecII strains showed greater resistance to gentamicin, ciprofloxacin, tetracycline, meropenem and cephalosporins compared with the other strains. The SCCmecII strains exhibited the highest rate in the tested genes (aacA/aphD: 55.2%, ermA/B/C: 89.7%, and tetK/M: 82.8%). ST5-SCCmecII was the predominant clone in the northern hospital, whereas SCCmecIVa was more pronounced in the southern hospital. In conclusion, our results raised concerns about the predominant MDR-MRSA strains in the pediatric hospitals in Vietnam. The north-south difference in the antibiotic resistance patterns and genetic structure of MRSA suggests different MRSA origins and various uses of antimicrobial agents between the two regions.

      • KCI등재

        Effective Elimination of Charge-associated Toxicity of Low Generation Polyamidoamine Dendrimer Eases Drug Delivery of Oxaliplatin

        Vo Minh Hoang Do,Long Giang Bach,Diem-Huong Nguyen Tran,Van Du Cao,Thi Nhu Quynh Nguyen,Duc Thuan Hoang,Van Cuong Ngo,Dai Hai Nguyen,Thai Thanh Hoang Thi 한국생물공학회 2020 Biotechnology and Bioprocess Engineering Vol.25 No.2

        Polyamidoamine (PAMAM) dendrimer is emerging as an effective nanocarrier for delivering anticancer drugs. Still, unmodified PAMAM dendrimer is hardly used in vivo because of unsatisfied drug release, high tendency of interfering with cellular membranes, and rapid clearance by reticuloendothelial system. In this study, low generation polyamidoamine (PAMAM) dendrimer G3.0 is developed and surface modified with methoxypolyethylene glycol (PAMAM G3.0-mPEG) to overcome its limitations. Specifically, PAMAM G3.0 conjugated with mPEG at different ratios are investigated to effectively eliminate its charge-associated toxicity, in which PAMAM G3.0-mPEG- 8 is chosen for oxaliplatin (OX) loading. Results reveal that OX-loaded PAMAM G3.0-mPEG-8 has desirable size, good entrapment efficiency, and sustained release with minimum drug leakage. In addition, Resazurin assay indicates that the toxicity of loaded OX is reduced as compared to free drug but still maintain substantially anticancer activity on HeLa cells, suggesting the potential application of PAMAM G3.0-mPEG-8 for OX delivery in cancer therapy.

      • KCI등재

        The Role of Zn Doping on the Catalytic Activity of the Nanoparticle Perovskite La0.7Sr0.3MnO3

        Tran Thi Minh Nguyet,Nguyen Quang Huan,Tran Que Chi,Do The Chan,Nguyen Doan Thai,Nguyen Cong Trang,Luu Tien Hung,Le Van Tiep,Nguyen Van Qui 한국물리학회 2008 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.52 No.5

        The nanometer complex oxide La0:7Sr0.3Mn0.6Zn0.₄O₃ was prepared by using a Sol-Gel method with citric acid as a ligand. The in uence of Zn doping of La0.7Sr0.₃MnO₃ on the structure, the morphology, the surface properties and on the catalytic activity of material was studied by using X-ray diraction (XRD), transmission electron microscopy (TEM), a high-resolution images and selected area electron diraction (SAED), physical adsorption and temperature programmed surface reaction (TPSR) methods. The results showed that perovskite La0:7Sr0:3Mn0:6. Zn0.₄O₃ could well catalyse propene oxidation in the temperature range 190 { 280 ℃, which was reduced to 100 { 120 ℃ for catalyst La1-χSrχMnO₃ The nanometer complex oxide La0:7Sr0.3Mn0.6Zn0.₄O₃ was prepared by using a Sol-Gel method with citric acid as a ligand. The in uence of Zn doping of La0.7Sr0.₃MnO₃ on the structure, the morphology, the surface properties and on the catalytic activity of material was studied by using X-ray diraction (XRD), transmission electron microscopy (TEM), a high-resolution images and selected area electron diraction (SAED), physical adsorption and temperature programmed surface reaction (TPSR) methods. The results showed that perovskite La0:7Sr0:3Mn0:6. Zn0.₄O₃ could well catalyse propene oxidation in the temperature range 190 { 280 ℃, which was reduced to 100 { 120 ℃ for catalyst La1-χSrχMnO₃

      • KCI등재

        Aluminum in rocks: Optimized microwave-assisted acid digestion and UV-Vis spectrophotometric measurement

        Nguyen Thanh-Nho,Thai Huynh-Thuc,Le-Thi Anh-Dao,Do Minh-Huy,Le-Thi Huynh-Mai,Le Quang-Huy,Nguyen-Thi Kim-Sinh,Nguyen Cong-Hau 한국분석과학회 2023 분석과학 Vol.36 No.5

        Aluminium (Al) is one of the major elements in rocks and its concentration can be varied, depending on different rock types as well as sources. The present study aimed to propose an analytical method based on the UV-Vis as a cheap, simple, and common instrument equipped in most laboratories for Al quantification in rocks after the microwave assisted acid digestion. The aluminone and 8-hydroxyquinoline were investigated for the colorimetric assay. The results show that the 8-hydroxyquinoline reagent was more favorable in terms of the minimized affects of the potential interferences present in the digested solutions, i.e., Fe3+, Si4+ and F–. The calibration curve was constructed from 0.10 mg/L to 3.00 mg/L with the goodness of linearity (R2 = 0.9996). The limits of detection and quantification (LOD and LOQ) were estimated, i.e., 0.029 mg/L and 0.087 mg/L, respectively. The 8-hydroxyquinoline was applied to real rock samples, demonstrating favorable precision (RSD = 0.34 %-1.8 %) and no remarkable differences were found compared to the inductively coupled plasma-mass spectrometry (ICP-MS) as a reference measurement approach.

      • A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system

        Siddiqui, Saqib,Kim, Do-Il,Roh, Eun,Duy, Le Thai,Trung, Tran Quang,Nguyen, Minh Triet,Lee, Nae-Eung Elsevier 2016 Nano energy Vol.30 No.-

        <P><B>Abstract</B></P> <P>Practical usage of piezoelectric nanogenerators (PENGs) under heavy loading environments for high power generation, such as smart shoes, has been limited due to the low mechanical endurance of many piezoelectric materials. Durability and performance under harsh environments are a stumbling block for the practical application of PENGs. Synthesis of piezoelectrically enhanced nanofibers electrospun from nanocomposite of barium titanate nanoparticles (BT NPs) dispersed in poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) enables successful fabrication of a robust, efficient, flexible and lead-free PENG. A nanofiber PENG (nf-PENG) fabricated by embedding nanocomposite nanofibers in an elastomer film is demonstrated for biomechanical energy harvesting and storage during walking. When placed inside of a shoe, a nf-PENG loaded with 15wt% BT NPs can generate an output of 25V at a walking frequency of 0.6Hz with high mechanical durability under very high loads (600N). This can charge a 4.7µF capacitor after approximately 72 steps. The stored charge can operate a strain sensor without any external power supply. The high performance of the nf-PENG is mainly attributed to the self-poled nanocomposite nanofibers. Additionally, embedding the nanofibers into an elastomer provided high durability by protecting the nanofibers from mechanical damage. Furthermore, the devices small form factor, flexibility, and transparency make this nf-PENG suitable for applications in wearable electronics, where aesthetics and comfort are also desired (in addition to performance). This work demonstrates the possibility of highly durable, efficient, and self-powered wearable sensing systems that can work under extreme environments.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Lead-free piezoelectric nanocomposite nanofibers. </LI> <LI> High durability under harsh environments and high loadings. </LI> <LI> Harvesting and storing biomechanical energy during walking. </LI> <LI> Self-powered system. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>A highly durable, efficient and flexible piezoelectric nanogenerator, comprised of piezoelectric nanocomposite nanofibers embedded into an elastomer, was designed for energy harvesting under heavy loading conditions. The high resistance of the generator to ambient conditions for prolonged periods of time, as well as resistance to damage under heavy loading conditions, enabled the efficient harvest of bio-mechanical energy during human walking. This energy could be stored in a capacitor to create a self-powered sensor system. This approach may help enable practical applications of piezoelectric nanogenerators in wearable systems.</P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼