RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Hemopexin: A Novel Anti-inflammatory Marker for Distinguishing COPD From Asthma

        Winter Natasha A.,Gibson Peter G.,Fricker Michael,Simpson Jodie L.,Wark Peter A.,McDonald Vanessa M. 대한천식알레르기학회 2021 Allergy, Asthma & Immunology Research Vol.13 No.3

        Purpose Systemic inflammatory biomarkers can improve diagnosis and assessment of chronic obstructive pulmonary disease (COPD) and asthma. We aimed to validate an airway disease biomarker panel of 4 systemic inflammatory biomarkers, α2-macroglobulin, ceruloplasmin, haptoglobin and hemopexin, to establish their relationship to airway disease diagnosis and inflammatory phenotypes and to identify an optimized biomarker panel for disease differentiation. Methods Participants with COPD or asthma were classified by inflammatory phenotypes. Immunoassay methods were used to measure levels of validation biomarkers in the sera of participants with disease and non-respiratory disease controls. Markers were analyzed individually and in combination for disease differentiation and compared to established biomarkers (C-reactive protein, interleukin-6, and white blood cell/blood eosinophil count). Results The study population comprised of 141 COPD, 127 severe asthma, 54 mild-moderate asthma and 71 control participants. Significant differences in ceruloplasmin, haptoglobin and hemopexin levels between disease groups and between systemic inflammatory phenotypes were observed. However, no differences were found between airway inflammatory phenotypes. Hemopexin was the best performing individual biomarker and could diagnose COPD versus control participants (area under the curve [AUC], 98.3%; 95% confidence interval [CI], 96.7%–99.9%) and differentiate COPD from asthmatic participants (AUC, 97.0%; 95% CI, 95.4%–98.6%), outperforming established biomarkers. A biomarker panel, including hemopexin, haptoglobin and other established biomarkers, could diagnose asthma versus control participants (AUC, 87.5%; 95% CI, 82.8%–92.2%). Conclusions Hemopexin can be a novel biomarker with superior diagnostic ability in differentiating COPD and asthma. We propose an anti-inflammatory axis between the airways and systemic circulation, in which hemopexin is a protective component in airway disease. Purpose Systemic inflammatory biomarkers can improve diagnosis and assessment of chronic obstructive pulmonary disease (COPD) and asthma. We aimed to validate an airway disease biomarker panel of 4 systemic inflammatory biomarkers, α2-macroglobulin, ceruloplasmin, haptoglobin and hemopexin, to establish their relationship to airway disease diagnosis and inflammatory phenotypes and to identify an optimized biomarker panel for disease differentiation. Methods Participants with COPD or asthma were classified by inflammatory phenotypes. Immunoassay methods were used to measure levels of validation biomarkers in the sera of participants with disease and non-respiratory disease controls. Markers were analyzed individually and in combination for disease differentiation and compared to established biomarkers (C-reactive protein, interleukin-6, and white blood cell/blood eosinophil count). Results The study population comprised of 141 COPD, 127 severe asthma, 54 mild-moderate asthma and 71 control participants. Significant differences in ceruloplasmin, haptoglobin and hemopexin levels between disease groups and between systemic inflammatory phenotypes were observed. However, no differences were found between airway inflammatory phenotypes. Hemopexin was the best performing individual biomarker and could diagnose COPD versus control participants (area under the curve [AUC], 98.3%; 95% confidence interval [CI], 96.7%–99.9%) and differentiate COPD from asthmatic participants (AUC, 97.0%; 95% CI, 95.4%–98.6%), outperforming established biomarkers. A biomarker panel, including hemopexin, haptoglobin and other established biomarkers, could diagnose asthma versus control participants (AUC, 87.5%; 95% CI, 82.8%–92.2%). Conclusions Hemopexin can be a novel biomarker with superior diagnostic ability in differentiating COPD and asthma. We propose an anti-inflammatory axis between the airways and systemic circulation, in which hemopexin is a protective component in airway disease.

      • SCOPUSKCI등재

        Cellular Biomarker of Membrane Stability and Hydrolytic Enzyme Activity in the Hemocytes of Benzo(a)pyrene-exposed Pacific Oyster, Crassostrea gigas

        Jo, QTae,Choy, Eun-Jung,Park, Doo Won,Jee, Young-Ju,Kim, Sung Yeon,Kim, Yoon 한국수산학회 2002 Fisheries and Aquatic Sciences Vol.5 No.4

        The pacific oysters, Crassostrea gigas, were stressed with different concentrations of benzo(a) pyrene and depurated to determine the hemocyte lysosomal membrance stability and hydrolytic enzymatic activity as a biomarker candidate to the chemical, using NRR (neutral red retention) and API ZYM System, respectively. The membrance damage measured as NRR decrease was significant with the increase of chemical concentration and exposure time (P<0.05), providing a possible tool for biomarker. Interestingly, the control showed intrinsic stress probably due to captive life in the laboratory, and a recovering trend was also found during the depuration. The benzo(a)pyrene-exposed oysters showed increased enzyme activities in alkaline phosphatase, esterase (C4), acid phosphatase, naphthol-AS-BI-phospho-hydrolase, β-galactosidase, β-galactosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase. Of them, only two enzymes, acid phosphatase and alkalike phosphatase, showed some potential available for the generation of enzymatic biomarker in the oyster. The results are suggestive of the potential availability of the cellular and enzymatic properties as a biomarker. However, considering that a robust biomarker should be insensitive to natural stress coming from normal physiological variation, but sensitive to pollutants, a concept of intrinsic stress the animal possesses should be taken into consideration. This reflects the necessity of further research on the intrinsic stress affecting the cellular and enzymatic properties of the chemical-stressed oysters prior to using the data as a biomarker.

      • KCI등재

        Word Embedding Reveals Cyfra 21-1 as a Biomarker for Chronic Obstructive Pulmonary Disease

        Heo Jeongwon,Moon Da Hye,Hong Yoonki,Bak So Hyeon,Kim Jeeyoung,Park Joo Hyun,Oh Byoung-Doo,Kim Yu-Seop,Kim Woo Jin 대한의학회 2021 Journal of Korean medical science Vol.36 No.35

        Background: Although patients with chronic obstructive pulmonary disease (COPD) experience high morbidity and mortality worldwide, few biomarkers are available for COPD. Here, we analyzed potential biomarkers for the diagnosis of COPD by using word embedding. Methods: To determine which biomarkers are likely to be associated with COPD, we selected respiratory disease-related biomarkers. Degrees of similarity between the 26 selected biomarkers and COPD were measured by word embedding. And we infer the similarity with COPD through the word embedding model trained in the large-capacity medical corpus, and search for biomarkers with high similarity among them. We used Word2Vec, Canonical Correlation Analysis, and Global Vector for word embedding. We evaluated the associations of selected biomarkers with COPD parameters in a cohort of patients with COPD. Results: Cytokeratin 19 fragment (Cyfra 21-1) was selected because of its high similarity and its significant correlation with the COPD phenotype. Serum Cyfra 21-1 levels were determined in patients with COPD and controls (4.3 ± 5.9 vs. 3.9 ± 3.6 ng/mL, P = 0.611). The emphysema index was significantly correlated with the serum Cyfra 21-1 level (correlation coefficient = 0.219, P = 0.015). Conclusion: Word embedding may be used for the discovery of biomarkers for COPD and Cyfra 21-1 may be used as a biomarker for emphysema. Additional studies are needed to validate Cyfra 21-1 as a biomarker for COPD.

      • P-67 Chronic Obstructive Pulmonary Disease Biomarker Research using the Word Embedding

        ( Jeongwon Heo ),( Ji Hun Kim ),( Jeeyoung Kim ),( So Hyeon Bak ),( Seok-ho Hong ),( Yoonki Hong ),( Seon-sook Han ),( Seung-joon Lee ),( Woo Jin Kim ) 대한결핵 및 호흡기학회 2017 대한결핵 및 호흡기학회 추계학술대회 초록집 Vol.124 No.-

        Purpose: Although chronic obstructive pulmonary disease (COPD) is a disease with a high morbidity and mortality worldwide, there are few biomarkers. We analyzed potential COPD biomarker factors using word embedding. Method: To determine the biomarkers that are likely to be associated with COPD, we selected biomarkers studied in lung cancer. The degree of similarity of selected 16 biomarkers and COPD was measured by word embedding, and fragments of cytokeratin-19 (cyfra21-1) were selected as the highest similarity value. We performed to evaluate the association between cyfra21-1 levels and the parameters of COPD in a cohort of COPD patients. Result: Plasma cyfra21-1 levels were observed in patient with COPD and controls (4.3±5.9 vs. 3.9 ±3.6 ng/mL, p=0.611). Emphysema index show significant correlation with plasma cyfra21-1 levels (correlation coefficient 0.2, p=0.015). Conclusion: We need further studies on the role of word embedding in COPD biomarker research and cyfra21-1 as a COPD biomarker would be required additional studies.

      • KCI등재

        Platelets as a Source of Peripheral Aβ Production and Its Potential as a Blood-based Biomarker for Alzheimer’s Disease

        Jae Seon Kang(강재선),Yun-Sik Choi(최윤식) 한국생명과학회 2020 생명과학회지 Vol.30 No.12

        알츠하이머병은 점진적인 신경세포의 손상과 이로 인해 인지기능 장애를 유발하는 질병이다. 이 질환은 현재로서는 치료할 수 있는 질환이 아니고 진행을 멈추게 할 수 있는 방법이 없다. 그러나 초기에 알츠하이머병을 치료하는 것이 가장 효과적이므로 초기 진단은 증상을 관리할 수 있는 가장 좋은 기회를 제공할 수 있다. 알츠하이머병을 진단하기 위한 바이오마커로는 아밀로이드 베타(Aβ), 병적인 타우, 그리고 신경퇴화가 있고, Aβ의 축적, 인산화 타우는 뇌척수액이나 양전자 방출 단층촬영술을 통해 분석할 수 있다. 그러나 뇌척수액의 채취는 매우 침습적이고 양전자 방출 단층촬영술은 전문적인 고가의 장비가 필요하다. 지난 수십년 동안 빠르고 최소한의 침습성을 가진 바이오마커 분석법을 개발하기 위하여 혈액에 기반한 바이오마커 분석 기술이 연구되어 왔다. 그 중 주목할 만 한 발견이 혈장에서 Aβ의 주요 원천으로 혈소판과의 관련성이다. 아밀로이드 베타는 혈액-뇌 장벽을 통과할 수 있고 정상 상태에서는 뇌와 혈액 간 평형을 이루게 된다. 흥미롭게도, 여러 임상시험 결과 혈장에서 Aβ42/Aβ40 비율이 가벼운 인지장애 질환과 알츠하이머병에서 감소되어 있는 것을 증명하였다. 종합하면, 이러한 최근의 발견들은 침습성을 최소화한 알츠하이머병의 초기 진단 기술을 개발하는 데 이용될 수 있다. 본 총설에서, 저자들은 알츠하이머병의 바이오마커에 대한 최근 연구결과들, 특히 말초에서 Aβ를 생산하는 혈소판의 역할과 혈액 기반 바이오마커로서의 개발 가능성에 대해 고찰하였다. Alzheimer’s disease causes progressive neuronal loss that leads to cognitive disturbances. It is not currently curable, and there is no way to stop its progression. However, since medical treatment for Alzheimer’s disease is most effective in the early stages, early detection can provide the best chance for symptom management. Biomarkers for the diagnosis of Alzheimer’s disease include amyloid β (Aβ) deposition, pathologic tau, and neurodegeneration. Aβ deposition and phosphorylated tau can be detected by cerebrospinal fluid (CSF) analysis or positron emission tomography (PET). However, CSF sampling is quite invasive, and PET analysis needs specialized and expensive equipment. During the last decades, blood-based biomarker analysis has been studied to develop fast and minimally invasive biomarker analysis method. And one of the remarkable findings is the involvement of platelets as a primary source of Aβ in plasma. Aβ can be transported across the blood–brain barrier, creating an equilibrium of Aβ levels between the brain and blood under normal condition. Interestingly, a number of clinical studies have unequivocally demonstrated that plasma Aβ42/Aβ40 ratios are reduced in mild cognitive impairment and Alzheimer’s disease. Together, these recent findings may lead to the development of a fast and minimally invasive early diagnostic approach to Alzheimer’s disease. In this review, we summarize recent advances in the biomarkers of Alzheimer’s disease, especially the involvement of platelets as a source of peripheral Aβ production and its potential as a blood-based biomarker.

      • KCI등재

        Prediction of Cognitive Progression in Individuals with Mild Cognitive Impairment Using Radiomics as an Improvement of the ATN System: A Five-Year Follow-Up Study

        Song Rao,Wu Xiaojia,Liu Huan,Guo Dajing,Tang Lin,Zhang Wei,Feng Junbang,Li Chuanming 대한영상의학회 2022 Korean Journal of Radiology Vol.23 No.1

        Objective: To improve the N biomarker in the amyloid/tau/neurodegeneration system by radiomics and study its value for predicting cognitive progression in individuals with mild cognitive impairment (MCI). Materials and Methods: A group of 147 healthy controls (HCs) (72 male; mean age ± standard deviation, 73.7 ± 6.3 years), 197 patients with MCI (114 male; 72.2 ± 7.1 years), and 128 patients with Alzheimer’s disease (AD) (74 male; 73.7 ± 8.4 years) were included. Optimal A, T, and N biomarkers for discriminating HC and AD were selected using receiver operating characteristic (ROC) curve analysis. A radiomics model containing comprehensive information of the whole cerebral cortex and deep nuclei was established to create a new N biomarker. Cerebrospinal fluid (CSF) biomarkers were evaluated to determine the optimal A or T biomarkers. All MCI patients were followed up until AD conversion or for at least 60 months. The predictive value of A, T, and the radiomics-based N biomarker for cognitive progression of MCI to AD were analyzed using Kaplan-Meier estimates and the log-rank test. Results: The radiomics-based N biomarker showed an ROC curve area of 0.998 for discriminating between AD and HC. CSF Aβ42 and p-tau proteins were identified as the optimal A and T biomarkers, respectively. For MCI patients on the Alzheimer’s continuum, isolated A+ was an indicator of cognitive stability, while abnormalities of T and N, separately or simultaneously, indicated a high risk of progression. For MCI patients with suspected non-Alzheimer’s disease pathophysiology, isolated T+ indicated cognitive stability, while the appearance of the radiomics-based N+ indicated a high risk of progression to AD. Conclusion: We proposed a new radiomics-based improved N biomarker that could help identify patients with MCI who are at a higher risk for cognitive progression. In addition, we clarified the value of a single A/T/N biomarker for predicting the cognitive progression of MCI.

      • KCI등재후보

        Biomarker analysis of rat livers exposed to different toxic pollutants (VOCs and PAHs) using an antibody array

        김응윤,이미영,황승용,강인철 한국바이오칩학회 2010 BioChip Journal Vol.4 No.3

        We have developed an antibody microarray chip for biomarker analysis in rat livers exposed to five different toxic pollutants: volatile organic compounds (VOCs), dichloromethane, ethylbenzene, and trichloroethylene; and polycyclic aromatic hydrocarbons (PAHs), benzoanthracene and phenanthrene. The antibody chip consisted of antibodies against different biomarkers: alpha-2 μ globulin, glutathione S transferase (GST)-α, Hemoglobin β, and Phenylalanine hydroxylase. VOC- and PAH-treated rat livers showed differential expression patterns of the biomarker proteins. These results demonstrate that a protein chip based antibody array is useful for the analysis of biomarkers induced by environmental toxic pollutants and can be a powerful tool to study the mechanisms of pollutants in biological samples.

      • KCI등재

        Biomarkers in Heart Failure: From Research to Clinical Practice

        Berezin Alexander E.,Berezin Alexander A. 대한진단검사의학회 2023 Annals of Laboratory Medicine Vol.43 No.3

        The aim of this narrative review is to summarize contemporary evidence on the use of circulating cardiac biomarkers of heart failure (HF) and to identify a promising biomarker model for clinical use in personalized point-of-care HF management. We discuss the reported biomarkers of HF classified into clusters, including myocardial stretch and biomechanical stress; cardiac myocyte injury; systemic, adipocyte tissue, and microvascular inflammation; cardiac fibrosis and matrix remodeling; neurohumoral activation and oxidative stress; impaired endothelial function and integrity; and renal and skeletal muscle dysfunction. We focus on the benefits and drawbacks of biomarker-guided assistance in daily clinical management of patients with HF. In addition, we provide clear information on the role of alternative biomarkers and future directions with the aim of improving the predictive ability and reproducibility of multiple biomarker models and advancing genomic, transcriptomic, proteomic, and metabolomic evaluations.

      • Biomarker-directed Targeted Therapy in Colorectal Cancer

        John M. Carethers Korean Society of Gastrointestinal Cancer 2015 Journal of digestive cancer reports Vol.3 No.1

        With advances in the understanding of the biology and genetics of colorectal cancer (CRC), diagnostic biomarkers that may predict the existence or future presence of cancer or a hereditary condition, and prognostic and treatment biomarkers that may direct the approach to therapy have been developed. Biomarkers can be ascertained and assayed from any tissue that may demonstrate the diagnostic or prognostic value, including from blood cells, epithelial cells via buccal swab, fresh or archival cancer tissue, as well as from cells shed into fecal material. For CRC, current examples of biomarkers for screening and surveillance include germline testing for suspected hereditary CRC syndromes, and stool DNA tests for screening average at-risk patients. Molecular biomarkers for CRC that may alter patient care and treatment include the presence or absence of microsatellite instability, the presence or absence of mutant KRAS, BRAF or PIK3CA, and the level of expression of 15-PGDH in the colorectal mucosa. Molecularly targeted therapies and some general therapeutic approaches rely on biomarker information. Additional novel biomarkers are on the horizon that will undoubtedly further the approach to precision or individualized medicine.

      • KCI등재후보

        Biomarkers for Stroke

        Suk Jae Kim,문경준,Oh Young Bang 대한뇌졸중학회 2013 Journal of stroke Vol.15 No.1

        Background Major stroke clinical trials have failed during the past decades. The failures suggest the presence of heterogeneity among stroke patients. Biomarkers refer to indicators found in the blood, other body fluids or tissues that predicts physiologic or disease states, increased disease risk, or pharmacologic responses to a therapeutic intervention. Stroke biomarkers could be used as a guiding tool for more effective personalized therapy. Main Contents Three aspects of stroke biomarkers are explored in detail. First, the possible role of biomarkers in patients with stroke is discussed. Second, the limitations of conventional biomarkers (especially protein biomarkers) in the area of stroke research are presented with the reasons. Lastly, various types of biomarkers including traditional and novel genetic,microvesicle, and metabolomics-associated biomarkers are introduced with their advantages and disadvantages. We especially focus on the importance of comprehensive approaches using a variety of stroke biomarkers. Conclusion Although biomarkers are not recommended in practice guidelines for use in the diagnosis or treatment of stroke, many efforts have been made to overcome the limitations of biomarkers. The studies reviewed herein suggest that comprehensive analysis of different types of stroke biomarkers will improve the understanding of individual pathophysiologies and further promote the development of screening tools for of high-risk patients, and predicting models of stroke outcome and rational stroke therapy tailored to the characteristics of each case.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼