RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigation on Micro-Milling of Ti–6Al–4V Alloy by PCD Slotting-Tools

        Jinjin Han,Xiuqing Hao,Liang Li,Li Zhong,Guolong Zhao,Ning He 한국정밀공학회 2020 International Journal of Precision Engineering and Vol.21 No.2

        Ti–6Al–4V is characterized by various protruding characteristics and has been found extensive applications in aerospace, biomedical device industries and other fields. However, these properties in turn bring about the increase in cutting forces, make the chips intractable to control and also shorten the tool service life, etc. A preliminary exploration of micro-milling of Ti–6Al–4V by PCD slotting-tool (MST-PCD) was launched in this paper. The most prominent advantage was the PCD slotting-tools could reach a higher linear velocity even the spindle speed was lower, which can strongly ensure the strength and stiffness of micro cutters and suppress the vibration occurrence due to the high spindle speed. The machining processes of using PCD slotting-tool and carbide micro-end mill (MEM-WC) was compared in detail. The wear experiments were conducted to confirm the effectiveness and advantage of MST-PCD. The cutting forces and surface quality, as well as the effects of tool wear on these output responses were investigated. Then model establishment and multi-objective parameter optimization were performed based on the orthogonal experiment results. Finally, verification experiments were also carried out to confirm the effectiveness of the developed models and MST-PCD. The findings in this paper can also be applied to other difficult-to-machine materials.

      • KCI등재

        Certain cs-Images of Locally Separable Metric Spaces

        Jinjin Li 경북대학교 자연과학대학 수학과 2003 Kyungpook mathematical journal Vol.43 No.1

        In this paper, we describe the closed cs-images of locally separable metric spaces, and characterize some sequence-covering cs-images and compact-covering cs-images of locally separable metric spaces.

      • SCIESCOPUSKCI등재

        Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

        ( Xiaonan Li ),( Guimin Zhang ),( Qingbao Li ),( Ping Zhang ),( Zhifeng Chen ),( Jinjin Liu ),( Shudan Yue ) 한국인터넷정보학회 2023 KSII Transactions on Internet and Information Syst Vol.17 No.8

        Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

      • KCI등재

        Hybrid Model for Renewable Energy and Load Forecasting Based on Data Mining and EWT

        Zhang Jinjin,Zhang Qian,Li Guoli,Wu Junjie,Wang Can,Li Zhi 대한전기학회 2022 Journal of Electrical Engineering & Technology Vol.17 No.3

        Accurate renewable resource (RES) and load prediction play key roles in the power grid planning schemes, eff ective dispatch, and stable operation of power systems. The proportions of wind and solar energy continue to increase, leading to wind and light abandonment. Thus, the absorption of wind and photovoltaic power is particularly important. On the basis of accurately predicting load, wind power and photovoltaic output, the accommodation capacity of wind and photovoltaic power is analyzed. The work contains fi ve parts, as follows: (1) empirical wavelet transform (EWT) is used to decompose wind power and load. At the same time, isolated forest (iForest) and fuzzy C-means clustering (FCM) are used to process photovoltaic data. (2) Low frequency and intermediate frequency components of load are predicted by improved random forest (IRF). High frequency component of load is clustered by improved density-based spatial clustering of applications with noise (IDBSCAN). The processing model is selected on the basis of the characteristics of each class sample. Each component of wind power are predicted by IRF. (3) Photovoltaic power of each category is predicted by IRF. (4) Diff erent components of load and wind power data are added. The photovoltaic power forecast data are synthesized according to the time point. (5) The forecast value of load, wind power, and photovoltaic output of a city are comprehensively evaluated by the summarized prediction level indicators. Three accommodation indicators are used for analyzing the accommodation capacity of wind power and photovoltaic. Results show that the forecasting methods of load, wind power, and photovoltaic power can generate better forecasting results than conventional methods. The analysis results of supplementary prediction level and accommodation indices provide reference for eff ective grid dispatching, sustainable, and healthy energy development.

      • KCI등재

        Genome-wide Identification and Expression Analyses of RPP13-like Genes in Barley

        Jinjin Cheng,Hui Fan,Lin Li,Boyao Hu,Hongyun Liu,Zheng Liu 한국바이오칩학회 2018 BioChip Journal Vol.12 No.2

        Plants have evolved a series of mechanisms to resist pathogens infection. The nucleotide-binding site and leucine-rich repeat (NBS-LRR) family contains the largest number of plant disease resistance genes in plants. Recognition of Peronospora Parasitica 13-like (RPP13-like) genes belong to this superfamily and play important roles in the resistance of various plant diseases including the downy mildew caused by Peronospora parasitica. In this study, 21 RPP13-like genes were identified in barley via bioinformatics. These genes all contained CC, NB-ARC and LRR domains. The physical and chemical properties, chromosome locations, gene structures, protein motifs, 3D protein structures, and microarray based expression dynamics of these genes, as well as their phylogenetic relationship with other plant species were analyzed. Non-expression of MLOC_19262.1 was detected without pathogen infection. When barley was inoculated with the powdery mildew pathogenic fungus, the expression of MLOC_ 19262.1 reached a very high level, suggesting that this gene is an important and promising candidate resistance gene for further study. The two RPP13-like genes, MLOC_57007.2 and MLOC_5059.1 may be involved in barley regular or abiotic stress induced physiological metabolism in specific tissues or at specific developmental stages; furthermore, these functions may be associated with specific domains. These findings provided evidence for the functional diversity of plant pathogen resistance genes and will be helpful for the future characterization of the PRR 13-like gene subfamily.

      • KCI등재

        Hematoporphyrin monomethyl ether combined with He–Ne laser irradiation-induced apoptosis in canine breast cancer cells through the mitochondrial pathway

        Huatao Li,Jinjin Tong,Damu Tang,Wenru Tian,Yun Liu 대한수의학회 2016 Journal of Veterinary Science Vol.17 No.2

        Hematoporphyrin monomethyl ether (HMME) combined with He-Ne laser irradiation is a novel and promising photodynamic therapy (PDT)-induced apoptosis that can be applied in vitro on canine breast cancer cells. However, the exact pathway responsible for HMME-PDT in canine breast cancer cells remains unknown. CHMm cells morphology and apoptosis were analyzed using optical microscope, terminal deoxynucleotidyl transferase dUTP nick end labeling fluorescein staining and DNA ladder assays. Apoptotic pathway was further confirmed by Real-time-polymerase chain reaction and Western blotting assays. Our results showed that HMME-PDT induced significant changes in cell morphology, such as formation of cytoplasmic vacuoles and the gradual rounding of cells coupled with decreased size and detachment. DNA fragmentation and cell death was shown to occur in a time-dependent manner. Furthermore, HMME-PDT increased the activities of caspase-9 and caspase-3, and released cytochrome c from mitochondria into the cytoplasm. HMME-PDT also significantly increased both mRNA and protein levels of Bax and decreased P53 gene expression in a time-dependent manner, while the mRNA and protein expression of Bcl-2 were repressed. These alterations suggest that HMME-PDT induced CHMm cell apoptosis via the mitochondrial apoptosis pathway and had anti-canine breast cancer effects in vitro.

      • KCI등재

        MicroRNA-708-3p as a potential therapeutic target via the ADAM17-GATA/STAT3 axis in idiopathic pulmonary fibrosis

        Bo Liu,Rongrong Li,Jinjin Zhang,Chao Meng,Jie Zhang,Xiaodong Song,Changjun Lv 생화학분자생물학회 2018 Experimental and molecular medicine Vol.50 No.-

        MicroRNAs (miRNAs) are important diagnostic markers and therapeutic targets for many diseases. However, the miRNAs that control the pathogenesis of idiopathic pulmonary fibrosis (IPF) and act as potential therapeutic targets for the disease are rarely studied. In the present study, we analyzed the function and regulatory mechanism of microRNA-708-3p (miR-708-3p) and evaluated this marker’s potential as a therapeutic target in IPF. The clinical and biological relevance of fibrogenesis for miR-708-3p was assessed in vivo and in vitro, specifically in matching plasma and tissue samples from 78 patients with IPF. The data showed that the miR-708-3p levels decreased during fibrosis and inversely correlated with IPF. The experiments showed that the decreased miR-708 promoter activity and primer-miR-708(pri-miR-708) expression were the potential causes. By computational analysis, a dual luciferase reporter system, rescue experiments and a Cignal Finder 45-Pathway system with siADAM17 and a miR-708-3p mimic, we identified that miR-708-3p directly regulates its target gene, a disintegrin and metalloproteinase 17 (ADAM17), through a binding site in the 3′ untranslated region, which depends on the GATA/STAT3 signaling pathway. Finally, an miR-708-3p agomir was designed and used to test the therapeutic effects of the miR-708-3p in an animal model. Small-animal imaging technology and other experiments showed that the dynamic image distribution of the miR-708-3p agomir was mainly concentrated in the lungs and could block fibrogenesis. In conclusion, the miR-708-3p– ADAM17 axis aggravates IPF, and miR-708-3p can serve as a potential therapeutic target for IPF.

      • KCI등재

        Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury

        Sun Jian,Pan Jinjin,Liu Qinlong,Cheng Jizhong,Tang Qing,Ji Yuke,Cheng Ke,wang Rui,Liu Liang,Wang Dingyou,Wu Na,Zheng Xu,Li Junxia,Zhang Xueyan,Zhu Zhilong,Ding Yanchun,Zheng Feng,Li Jia,Zhang Ying,Yua 한국응용약물학회 2023 Biomolecules & Therapeutics(구 응용약물학회지) Vol.31 No.1

        Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.

      • SCIESCOPUSKCI등재

        Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

        Qingxia Huang,Jing Li,Jinjin Chen,Zepeng Zhang,Peng Xu,Hongyu Qi,Zhaoqiang Chen,Jiaqi Liu,Jing Lu,Mengqi Shi,Yibin Zhang,Ying Ma,Daqing Zhao,Xiangyan Li The Korean Society of Ginseng 2023 Journal of Ginseng Research Vol.47 No.3

        Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.

      • KCI등재

        Genomic Characteristics and the Potential Clinical Implications in Oligometastatic Non–Small Cell Lung Cancer

        Rongxin Liao,Kehong Chen,Jinjin Li,Hengqiu He,Guangming Yi,Mingfeng Huang,Rongrong Chen,Lu Shen,Xiaoyue Zhang,Zaicheng Xu,Zhenzhou Yang,Yuan Peng 대한암학회 2023 Cancer Research and Treatment Vol.55 No.3

        Purpose Oligometastatic non–small cell lung cancer (NSCLC) patients have been increasingly regarded as a distinct group that could benefit from local treatment to achieve a better clinical outcome. However, current definitions of oligometastasis are solely numerical, which are imprecise because of ignoring the biological heterogeneity caused by genomic characteristics. Our study aimed to profile the molecular alterations of oligometastatic NSCLC and elucidate its potential difference from polymetastasis. Materials and Methods We performed next-generation sequencing to analyze tumors and paired peripheral blood from 77 oligometastatic and 21 polymetastatic NSCLC patients to reveal their genomic characteristics and assess the genetic heterogeneity. Results We found ERBB2, ALK, MLL4, PIK3CB, and TOP2A were mutated at a significantly lower frequency in oligometastasis compared with polymetastasis. EGFR and KEAP1 alterations were mutually exclusive in oligometastatic group. More importantly, oligometastasis has a unique significant enrichment of apoptosis signaling pathway. In contrast to polymetastasis, a highly enriched COSMIC signature 4 and a special mutational process, COSMIC signature 14, were observed in the oligometastatic cohort. According to OncoKB database, 74.03% of oligometastatic NSCLC patients harbored at least one actionable alteration. The median tumor mutation burden of oligometastasis was 5.00 mutations/Mb, which was significantly associated with smoking, DNA damage repair genes, TP53 mutation, SMARCA4 mutation, LRP1B mutation, ABL1 mutation. Conclusion Our results shall help redefine oligometastasis beyond simple lesion enumeration that will ultimately improve the selection of patients with real oligometastatic state and optimize personalized cancer therapy for oligometastatic NSCLC.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼