RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Influence of Non-Flat Terrain and Wind Direction Shear on Canopy Turbulence

        이영희 한국기상학회 2012 Asia-Pacific Journal of Atmospheric Sciences Vol.48 No.3

        We have analyzed eddy covariance data collected within open canopy to investigate the influence of non-flat terrain and wind direction shear on the canopy turbulence. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree at this site. A variety of turbulent statistics were examined as a function of wind direction in near-neutral conditions. Heterogeneous surface characteristics results in significant differences in measured turbulent statistics. Upwind trees on the flat and up-sloping terrains yield typical features of canopy turbulence while upwind elevated surface with trees yields significant wind direction shear, reduced u and w skewness, and negligible correlation between u and w. The directional dependence of turbulence statistics is due that strong wind blows more horizontally rather than following terrain, and hence combination of slope related momentum flux and canopy eddy motion decreases the magnitude of Skw and ruw for the downslope flow while it enhances them for the upslope flow. Significant v skewness to the west indicates intermittent downdraft of northerly wind, possibly due to lateral shear of wind in the presence of significant wind direction shear. The effects of wind direction shear on turbulent statistics were also examined. The results showed that correlation coefficient between lateral velocities and vertical velocity show significant dependence on wind direction shear through change of lateral wind shear. Quadrant analysis shows increased outward interaction and reduced role of sweep motion for longitudinal momentum flux for the downslope flow. Multi-resolution analysis indicates that uw correlation shows peak at larger averaging time for the upslope flow than for the downslope flow, indicating that large eddy plays an active role in momentum transfer for the upslope flow. On the other hand, downslope flow shows larger velocity variances than other flows despite similar wind speed. These results suggest that non-flatness of terrain significantly influences on canopy-atmosphere exchange. We have analyzed eddy covariance data collected within open canopy to investigate the influence of non-flat terrain and wind direction shear on the canopy turbulence. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree at this site. A variety of turbulent statistics were examined as a function of wind direction in near-neutral conditions. Heterogeneous surface characteristics results in significant differences in measured turbulent statistics. Upwind trees on the flat and up-sloping terrains yield typical features of canopy turbulence while upwind elevated surface with trees yields significant wind direction shear, reduced u and w skewness, and negligible correlation between u and w. The directional dependence of turbulence statistics is due that strong wind blows more horizontally rather than following terrain, and hence combination of slope related momentum flux and canopy eddy motion decreases the magnitude of Skw and ruw for the downslope flow while it enhances them for the upslope flow. Significant v skewness to the west indicates intermittent downdraft of northerly wind, possibly due to lateral shear of wind in the presence of significant wind direction shear. The effects of wind direction shear on turbulent statistics were also examined. The results showed that correlation coefficient between lateral velocities and vertical velocity show significant dependence on wind direction shear through change of lateral wind shear. Quadrant analysis shows increased outward interaction and reduced role of sweep motion for longitudinal momentum flux for the downslope flow. Multi-resolution analysis indicates that uw correlation shows peak at larger averaging time for the upslope flow than for the downslope flow, indicating that large eddy plays an active role in momentum transfer for the upslope flow. On the other hand, downslope flow shows larger velocity variances than other flows despite similar wind speed. These results suggest that non-flatness of terrain significantly influences on canopy-atmosphere exchange.

      • KCI등재

        제주국제공항 저층급변풍 발생 특성 및 예측 성능

        김근회,최희욱,석재혁,이상삼,이용희 한국항공운항학회 2023 한국항공운항학회지 Vol.31 No.3

        Sudden wind changes at low altitudes pose a significant threat to aircraft operations. In particular, airports located in regions with complex terrain are susceptible to frequent abrupt wind variations, affecting aircraft takeoff and landing. To mitigate these risks, Low Level Wind shear Alert System (LLWAS) have been implemented at airports. This study focuses on understanding the characteristics of wind shear and developing a prediction model for Jeju International Airport, which experiences frequent wind shear due to the influence of Halla Mountain and its surrounding terrain. Using two years of LLWAS data, the study examines the occurrence patterns of wind shear at Jeju International Airport. Additionally, high-resolution numerical model is utilized to produce forecasted information on wind shear. Furthermore, a comparison is made between the predicted wind shear and LLWAS observation data to assess the prediction performance. The results demonstrate that the prediction model shows high accuracy in predicting wind shear caused by southerly winds.

      • KCI등재후보

        BEM 방법을 적용한 2MW 육상용 풍력터빈의 윈드 쉬어 추력 변동 고찰

        임채욱 한국풍력에너지학회 2018 풍력에너지저널 Vol.9 No.2

        Multi-MW wind turbines have very long and large blades. There are some factors that exert asymmetric dynamic thrusts on a blade. Wind shear is one of the main factors that produce asymmetric dynamic loads on a blade of a multi-MW wind turbine. In this paper, a 2 MW on-shore wind turbine that has three blades with a rotor radius of 40 m and hub height of 60 m is considered and thrust variations on a blade under wind shear are calculated according to the wind speed. The commercial software GH Bladed is used for calculating thrust variations based on the blade element momentum (BEM) method. And the amplitudes of the thrust variations by wind shear with varying wind speed are investigated by introducing a "wind shear coefficient of thrust variation" based on the steady-state value of thrust without wind shear.

      • KCI등재

        정격풍속 이하에서 풍력터빈의 윈드쉬어 추력 동하중 개발

        임채욱(Chae-Wook Lim) 대한기계학회 2016 大韓機械學會論文集A Vol.40 No.4

        풍력터빈이 ㎿급으로 대형화되면서 블레이드의 길이가 40미터 이상으로 길어지게 되어, 로터 블레이드가 회전할 때 블레이드에 발생하는 비대칭하중이 증가하게 되었다. 윈드쉬어, 타워 섀도우, 난류풍속 같은 요소들은 블레이드에 이런 비대칭하중 발생에 영향을 미친다. 본 논문은 원드쉬어로 인해 블레이드에 발생하는 추력변동에 의한 동하중을 추력계수를 이용하여 모델링하는 방법에 관한 것이다. 이를 위하여 “윈드쉬어 추력변동 계수”를 정의 및 도입하고, 2㎿ 육상용 풍력터빈을 대상으로 정격이하의 풍속에서 윈드쉬어 추력변동 계수값을 구하여 분석한다. 구해진 “윈드쉬어 추력변동 계수”와 추력계수를 이용하여 Matlab/Simulink에서 윈드쉬어 동하중 모델을 구현하고, 윈드쉬어에 의해 세 블레이드에 작용하는 추력변동을 추력계수와 “윈드쉬어 추력변동 계수”를 동시에 이용하여 표현할 수 있음을 보인다. As wind turbines are getting larger in size with multi-㎿ capacity, the blades are getting longer, over 40 m, and hence the asymmetric loads produced during the rotation of the rotor blades are increasing. Some factors such as wind shear, tower shadow, and turbulence have an effect on the asymmetric loads on the blades. This paper focuses on a method of modeling the dynamic load acting on a blade because of thrust variation under wind shear. A method that uses thrust coefficient is presented. For this purpose, “wind shear coefficient of thrust variation” is defined and introduced. Further, we calculate the values of the “wind shear coefficient of thrust variation” for a 2 ㎿ on-shore wind turbine, and analyze them for speeds below the rated wind speed. Then, we implement a dynamic model that represents the thrust variation under wind shear on a blade, using MATLAB/Simulink. It is shown that it is possible to express thrust variations on three blades under wind shear by using both thrust coefficient and “wind shear coefficient of thrust variation.”

      • KCI등재후보

        A Wind Shear Mitigation Method To Improve Wind Turbine Performance

        김현구,우상우 한국풍공학회 2012 한국풍공학회지 Vol.16 No.4

        This study investigates a wind-shear mitigation method for improving wind turbine performance by modifying a vertical wind profile projecting to an MW-class wind turbine. A Computational Fluid Dynamics software, FLUENT, is used to simulate the characteristics of steady/unsteady wind flow over a shear-free structure installed upstream of a wind turbine. The shape of the shear-free structure can be a fence, buildings and wind break trees, and such like. According to the results of the numerical simulation, it is obvious that wind shear between the heights of a wind turbine rotor-plane is noticeably mitigated due to the speedup effect on a virtual hill generated by flow separation behind a shear-free structure.

      • SCIESCOPUS

        Wind load combinations and extreme pressure distributions on low-rise buildings

        Tamura, Yukio,Kikuchi, Hirotoshi,Hibi, Kazuki Techno-Press 2000 Wind and Structures, An International Journal (WAS Vol.3 No.4

        The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

      • KCI등재

        전단벽 구조물의 풍응답 저감을 위한 LRB의 적용

        박용구,김현수,고현,김민균,이동근 한국공간구조학회 2011 한국공간구조학회지 Vol.11 No.1

        In general, shear walls are employed as lateral resistance system. Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. In this study, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam of the coupled shear wall structures and the wind-induced response reduction effect of this system was investigated. In order to evaluate the control performance of the proposed method, 20- and 30-story building structures were used as example structures and boundary nonlinear time history analyses have been performed using artificial wind excitation. Japanese vibration evaluation criteria was employed to evaluate whether the proposed system could improve the serviceability of the tall coupled shear wall structures under wind excitation. Based on analytical results, it has been shown that the proposed method that connects shear walls with LRBs can improve the wind-induced response control effect. 일반적으로 전단벽은 횡력저항 요소로서 널리 이용되고 있다. 대부분의 전단벽 구조물은 통로의 목적으로 개구부를 필요로 하게 되고 전단벽들 사이가 슬래브나 연결보로 연결된 병렬전단벽의 형태를 띠게 된다. 본 연구에서는 병렬전단벽 구조물의 연결보 중앙부에 LRB(Lead Rubber Bearing)를 도입하였고 이 시스템의 풍응답 저감성능을 검토하였다. 제안된 방법의 효과를 살펴보기 위하여 20층 및 30층 예제구조물을 구성하였고 인공풍하중을 작성하여 경계비선형 시간이력해석을 수행하였다. 제안된 방법이 풍하중을 받는 고층 병렬전단벽 구조물의 사용성 향상에 도움을 줄 수 있는지 평가하기 위하여 일본 진동성능평가기준을 적용하여 보았다. 해석결과 본 논문에서 제안하는 LRB를 사용하여 병렬전단벽을 연결하는 방식이 풍응답 제어성능 개선에 효과가 있는 것을 확인할 수 있었다.

      • KCI등재

        도심항공교통(UAM) 운용 실증 노선의 기상 특성 및 시사점: 한강회랑의 시정 및 바람을 중심으로

        원완식,김연명 한국기상학회 2023 대기 Vol.33 No.4

        Urban Air Mobility (UAM) is promising, sustainable and efficient air transportation in a metropolitan area. Korean government has recently announced operation demonstration plans as a step toward commercialization of UAM. However, there is lack of understanding on the potential impact of weather on UAM operation. We collected weather observations from Gimpo International Airport and 5 automatic weather stations (AWS) along UAM corridor of the Han- River to assess weather barriers such as low visibility, wind gust and wind shear. The results show the frequency of low visibility near the corridor fluctuated significantly from year to year depending on the concentration of fine particulate matter (PM2.5) in Seoul. The frequency of high wind speed-shift calculated using 1-minute wind observations was increased not only during the spring season (March, April, and May) but also the beginning of rainy season (Jun). In addition, a chance of high wind shear from 1-minute wind observations varied by the stations, suggesting that the condition is largely affected by topography including a river and high-rise buildings. These basic weather properties suggest that there are substantial weather barriers to UAM operations along the Han-River Corridor, while they cannot properly surveil micro-scale weather conditions in detail such as wind gust and wind shear over the corridor. Thus, this study suggests that potential barriers related to adverse weather need to be evaluated, building high-density weather observations infrastructure prior to UAM demonstration and commercialization.

      • 풍력발전기 풍상부 지면설치 구조물에 의한 풍속전단 개선효과의 전산유동해석

        김현구(Kim, Hyun-Goo),우상우(Woo, Sang-Woo),장문석(Jang, Moon-Seok),신형기(Shin, Hyuong-Ki) 한국신재생에너지학회 2008 한국신재생에너지학회 학술대회논문집 Vol.2008 No.05

        This study demonstrates the advantages of a shear-free structure designed to modify vertical profiles of wind speed in the atmospheric surface layer. Computational fluid dynamics(CFD) software, FLUENT is used to interpret the velocity field modification around the structure and wind turbine. The shapes of shear-free structure, installed at upstream toward prevailing wind direction, would be fences, buildings and trees, etc. According to the simulation results, it is obvious that wind shear between heights of wind turbine's blades is decreased together with a speed-up advantage. This would lead decrease of periodic wind loading caused by wind shear and power-out increase by flow uniformity and wind speed-up.

      • KCI등재

        경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성

        이영희(Young-Hee Lee) 한국기상학회 2015 대기 Vol.25 No.4

        We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼