RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Composite hydrogels filled with inclusion complexes made from β-cyclodextrins with poly(propylene glycol) bisamine

        Huaiqing Yu,Hongliang Wei,Dandan Hou,Ai-ying Zhang,Zeng-guo Feng 한국물리학회 2007 Current Applied Physics Vol.7 No.s1

        A novel kind of composite hydrogel lled with inclusion complexes (ICs) made fromb-cyclodextrins (b-CDs) with amine-terminatedpoly(propylene glycol) (PPG-BA) was prepared by copolymerization of methacryloyl end-capped poly(L-lactide)-poly(ethylene glycol)-poly-(L-lactide) macromer (DMPEGL) with acrylic acid (AA) in water under UV irradiation. Owing to the hydrogen bonding interactionof COOH in AA on the network backbones with NH2 and OH in ICs embedded in the crosslinked network, the composite hydrogelsmechanical properties being signicantly improved. The mass loss test conducted in water indicates that they degrade by following a dualdegradation mechanism, that is, not onlyb-CDs slipping from the polymer axles and then escaping out of the hydrogel network, but alsothe bulk hydrogel network hydrolyzing itself to lose the weight. These composite hydrogels show potential to be used as biomaterials fortissue engineering scaolds and carriers of drugs with controlled release.

      • SCIESCOPUSKCI등재

        Adaptive Complex Interpolator for Channel Estimation in Pilot-Aided OFDM System

        Liu, Guanghui,Zeng, Liaoyuan,Li, Hongliang,Xu, Linfeng,Wang, Zhengning The Korea Institute of Information and Commucation 2013 Journal of communications and networks Vol.15 No.5

        In an orthogonal frequency division multiplexing system, conventional interpolation techniques cannot correctly balance performance and overhead when estimating dynamic long-delay channels in single frequency networks (SFNs). In this study, classical filter analysis and design methods are employed to derive a complex interpolator for maximizing the resistible echo delay in a channel estimator on the basis of the correlation between frequency domain interpolating and time domain windowing. The coefficient computation of the complex interpolator requires a key parameter, i.e., channel length, which is obtained in the frequency domain with a tentative estimation scheme having low implementation complexity. The proposed complex adaptive interpolator is verified in a simulated digital video broadcasting for terrestrial/handheld receiver. The simulation results indicate that the designed channel estimator can not only handle SFN echoes with more than $200{\mu}s$ delay but also achieve a bit-error rate performance close to the optimum minimum mean square error method, which significantly outperforms conventional channel estimation methods, while preserving a low implementation cost in a short-delay channel.

      • KCI등재

        Targeting treatment of bladder cancer using PTK7 aptamer-gemcitabine conjugate

        Xiang Wei,Peng Yongbo,Zeng Hongliang,Yu Chunping,Zhang Qun,Liu Biao,Liu Jiahao,Hu Xing,Wei Wensu,Deng Minhua,Wang Ning,Liu Xuewen,Xie Jianfei,Hou Weibin,Tang Jin,Long Zhi,Wang Long,Liu Jianye 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Gemcitabine (GEM) is one of the first-line chemotherapies for bladder cancer (BC), but the GEMs cannot recognize cancer cells and have a low long-term response rate and high recurrence rate with side effects during the treatment of BC. Targeted transport of GEMs to mediate cytotoxicity to tumor and avoid the systemic side effects remains a challenge in the treatment of BC.Based on a firstly confirmed biomarker in BC-protein tyrosine kinase 7 (PTK7), which is overexpressed on the cell membrane surface in BC cells, a novel targeting system protein tyrosine kinase 7 aptamer-Gemcitabine conjugate (PTK7-GEMs) was designed and synthesized using a specific PTK7 aptamer and GEM through auto-synthesis method to deliver GEM against BC. In addition, the antitumor effects and safety evaluation of PTK7-GEMs was assessed with a series of in vitro and in vivo assays.PTK7-GEMs can specifically bind and enter to BC cells dependent on the expression levels of PTK7 and via the macropinocytosis pathway, which induced cytotoxicity after GEM cleavage from PTK7-GEMs respond to the intracellular phosphatase. Moreover, PTK7-GEMs showed stronger anti-tumor efficacy and excellent biosafety in three types of tumor xenograft mice models.These results demonstrated that PTK7-GEMs is a successful targeted aptamer-drug conjugates strategy (APDCs) to treat BC, which will provide new directions for the precision treatment of BC in the field of biomarker-oriented tumor targeted therapy.

      • KCI등재

        Adaptive Complex Interpolator for Channel Estimation in Pilot-Aided OFDM System

        Guanghui Liu,Liaoyuan Zeng,Hongliang Li,Linfeng Xu,ZhengningWang 한국통신학회 2013 Journal of communications and networks Vol.15 No.5

        In an orthogonal frequency division multiplexing system,conventional interpolation techniques cannot correctly balanceperformance and overhead when estimating dynamic longdelaychannels in single frequency networks (SFNs). In this study,classical filter analysis and design methods are employed to derivea complex interpolator for maximizing the resistible echo delay in achannel estimator on the basis of the correlation between frequencydomain interpolating and time domain windowing. The coefficientcomputation of the complex interpolator requires a key parameter,i.e., channel length, which is obtained in the frequency domain witha tentative estimation scheme having low implementation complexity. The proposed complex adaptive interpolator is verified in asimulated digital video broadcasting for terrestrial/handheld receiver. The simulation results indicate that the designed channelestimator can not only handle SFN echoes with more than 200 µsdelay but also achieve a bit-error rate performance close to the optimumminimum mean square error method, which significantlyoutperforms conventional channel estimation methods, while preservinga low implementation cost in a short-delay channel.

      • KCI등재

        Robust CFO Acquisition in PN-Padded OFDM Systems

        Guanghui Liu,Liaoyuan Zeng,Hongliang Li,Linfeng Xu,ZhengningWang 한국전자통신연구원 2013 ETRI Journal Vol.35 No.4

        As an alternative to the traditional pilot-aided orthogonal frequency division multiplexing (OFDM), the time-domain pseudonoise (PN)-padded OFDM provides a higher spectral efficiency. However, the carrier frequency offset (CFO) attenuates peaks of the conventional PN correlation output, which limits the CFO estimation range of the OFDM synchronizer. An improved correlation is proposed in this letter to remove the CFO-induced amplitude attenuation of correlation peaks. For a synchronizer adopting the designed correlator, a larger range of CFO acquisition is obtained through using wider correlation windows with a smaller interval between them. The proposed method of CFO acquisition is verified in a digital terrestrial multimedia broadcast receiver, in which the synchronizer is able to acquire CFOs up to ±320 kHz in the DVB-T F1 channel. Furthermore, the acquisition range can be expanded in more favorable channels.

      • KCI등재

        De novo design of a novel AIE fluorescent probe tailored to autophagy visualization via pH manipulation

        Huang Xueyan,Chen Fei,Ma Yeshuo,Zheng Fan,Fang Yanpeng,Feng Bin,Huang Shuai,Zeng Hongliang,Zeng Wenbin 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Macroautophagy is an essential cellular self-protection mechanism, and defective autophagy has been considered to contribute to a variety of diseases. During the process, cytoplasmic components are transported via autophagosomes to acidic lysosomes for metabolism and recycling, which represents application niches for lysosome-targeted fluorescent probes. Additionally, in view of the complexity of the autophagy pathway, it entails more stringent requirements for probes suitable for monitoring autophagy. Meanwhile, aggregation-induced emission (AIE) fluorescent probes have been impressively demonstrated in the biomedical field, which bring fascinating possibilities to the autophagy visualization.We reported a generalizable de novo design of a novel pH-sensitive AIE probe ASMP-AP tailored to lysosome targeting for the interpretation of autophagy. Firstly, the theoretical calculation was carried out followed by the investigation of optical properties. Then, the performance of ASMP-AP in visualizing autophagy was corroborated by starvation or drugs treatments. Furthermore, the capability of ASMP-AP to monitor autophagy was demonstrated in ex vivo liver tissue and zebrafish in vivo.ASMP-AP displays a large stokes shift, great cell permeability and good biocompatibility. More importantly, ASMP-AP enables a good linear response to pH, which derives from the fact that its aggregation state can be manipulated by the acidity. It was successfully applied for imaging autophagy in living cells and was proved capable of monitoring mitophagy. Moreover, this novel molecular tool was validated by ex vivo visualization of activated autophagy in drug-induced liver injury model. Interestingly, it provided a meaningful pharmacological insight that the melanin inhibitor 1-phenyl-2-thiourea (PTU)-induced autophagy was clearly presented in wild-type zebrafish.ASMP-AP offers a simple yet effective tool for studying lysosome and autophagy. This is the first instance to visualize autophagy in zebrafish using a small-molecule probe with AIE characters, accurate lysosome targeting and simultaneous pH sensitivity. Ultimately, this novel fluorescent system has great potential for in vivo translation to fuel autophagy research.

      • KCI등재

        Ratiometric and discriminative visualization of autophagic processes with a novel dual-responded lysosome-specific fluorescent probe

        Fan Zheng,Yeshuo Ma,Jipeng Ding,Shuai Huang,Shengwang Zhang,Xueyan Huang,Bin Feng,Hongliang Zeng,Fei Chen,Wenbin Zeng 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background Autophagy is a critical self-eating pathway involved in numerous physiological and pathological processes. Lysosomal degradation of dysfunctional organelles and invading microorganisms is central to the autophagy mechanism and essential for combating disease-related conditions. Therefore, monitoring fluctuations in the lysosomal microenvironment is vital for tracking the dynamic process of autophagy. Although much effort has been put into designing probes for measuring lysosomal viscosity or pH separately, there is a need to validate the concurrent imaging of the two elements to enhance the understanding of the dynamic progression of autophagy. Methods Probe HFI was synthesized in three steps and was developed to visualize changes in viscosity and pH within lysosomes for real-time autophagy tracking. Then, the spectrometric determination was carried out. Next, the probe was applied to image autophagy in cells under nutrient-deprivation or external stress. Additionally, the performance of HFI to monitor autophagy was employed to evaluate acetaminophen-induced liver injury. Results We constructed a ratiometric dual-responsive probe, HFI, with a large Stokes shift over 200 nm, dualwavelength emission, and small background interference. The ratiometric fluorescent signal (R = I610/I460) of HFI had an excellent correlation with both viscosity and pH. More importantly, high viscosity and low pH had a synergistic promotion effect on the emission intensity of HFI, which enabled it to specially lit lysosomes without disturbing the inherent microenvironment. We then successfully used HFI to monitor intracellular autophagy induced by starvation or drugs in real-time. Interestingly, HFI also enabled us to visualize the occurrence of autophagy in the liver tissue of a DILI model, as well as the reversible effect of hepatoprotective drugs on this event. Conclusions In this study, we developed the first ratiometric dual-responsive fluorescent probe, HFI, for real-time revealing autophagic details. It could image lysosomes with minimal perturbation to their inherent pH, allowing us to track changes in lysosomal viscosity and pH in living cells. Ultimately, HFI has great potential to serve as a useful indicator for autophagic changes in viscosity and pH in complex biological samples and can also be used to assess drug safety.

      • KCI등재

        Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA

        Chunping Yu,Yi Zhang,Ning Wang,Wensu Wei,Ke Cao,Qun Zhang,Peiying Ma,Dan Xie,Pei Wu,Biao Liu,Jiahao Liu,Wei Xiang,Xing Hu,Xuewen Liu,Jianfei Xie,Jin Tang,Zhi Long,Long Wang,Hongliang Zeng,Jianye Liu 한국생체재료학회 2022 생체재료학회지 Vol.26 No.1

        Background: Circular RNAs (circRNAs) have important functions in many fields of cancer biology. In particular, we previously reported that the oncogenic circRNA, circPRMT5, has a major role in bladder cancer progression. Therapy based on circRNAs have good prospects as anticancer strategies. While anti-circRNAs are emerging as therapeutics, the specific in vivo delivery of anti-circRNAs into cancer cells has not been reported and remains challenging. Methods: Synthesized chrysotile nanotubes (SCNTs) with a relatively uniform length (~ 200 nm) have been designed to deliver an siRNA against the oncogenic circPRMT5 (si-circPRMT5) inhibit circPRMT5. In addition, the antitumor effects and safety evaluation of SCNTs/si-circPRMT5 was assessed with a series of in vitro and in vivo assays. Results: The results showed that SCNTs/si-circPRMT5 nanomaterials prolong si-circPRMT5’s half-life in circulation, enhance its specific uptake by tumor cells, and maximize the silencing efficiency of circPRMT5. In vitro, SCNTs encapsulating si-circPRMT5 could inhibit bladder cancer cell growth and progression. In vivo, SCNTs/si-circPRMT5 inhibited growth and metastasis in three bladder tumor models (a subcutaneous model, a tail vein injection lung metastatic model, and an in situ model) without obvious toxicities. Mechanistic study showed that SCNTs/sicircPRMT5 regulated the miR-30c/SNAIL1/E-adherin axis, inhibiting bladder cancer growth and progression. Conclusion: The results highlight the potential therapeutic utility of SCNTs/si-circPRMT5 to deliver si-circPRMT5 to treat bladder cancer.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼