RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        골이식용 생체재료로서 생체 활성 유리와 표면처리

        한인호,이인섭,최재혁,백홍수 한국생체재료학회 2006 생체재료학회지 Vol.10 No.2

        Since middle of 20 century, so many efforts have been conducted to make excellent biocompatible biomaterials especially for quick and firm osseointegration. SiO2-CaO-NaO-P2O5 system was proposed with the name of 멊ioglass? Bioglasses provide the convenient surface for hydroxyapatite formation when they are immersed in the body fluids. Bioglasses are the first artificial materials which can make direct bonding to the bone. Alkali treatment to metals and zeta-potential experiment are reviewed to investigate the essential component for the hydroxyapatite formation. It is uncovered that the essential component is not Si, Ca nor P but hydroxyl group.

      • KCI등재

        Regulation of lubricin for functional cartilage tissue regeneration: a review

        이윤섭,Jae-Hoon Choi,Nathaniel Suk-Yeon Hwang 한국생체재료학회 2018 생체재료학회지 Vol.22 No.2

        Background: Lubricin is chondrocyte-secreted glycoprotein that primarily conducts boundary lubrication between joint surfaces. Besides its cytoprotective function and extracellular matrix (ECM) attachment, lubricin is recommended as a novel biotherapeutic protein that restore functional articular cartilage. Likewise, malfunction of lubrication in damaged articular cartilage caused by complex and multifaceted matter is a major concern in the field of cartilage tissue engineering. Main body: Although a noticeable progress has been made toward cartilage tissue regeneration through numerous approaches such as autologous chondrocyte implantation, osteochondral grafts, and microfracture technique, the functionality of engineered cartilage is a challenge for complete reconstruction of cartilage. Thus, delicate modulation of lubricin along with cell/scaffold application will expand the research on cartilage tissue engineering. Conclusion: In this review, we will discuss the empirical analysis of lubricin from fundamental interpretation to the practical design of gene expression regulation.

      • 변환성장인자-b1을 함유한 알지네이트 비드의 제조 및 방출거동

        강길선,김문석,조선행,이종문,이해방,김은정,박기숙 한국생체재료학회 2004 생체재료학회지 Vol.8 No.1

        We developed the transforming growth factor-b1 (TGF-b1) loaded sodium alginate beads by means of dropping alginate solution into a CaCl2 solution to examine the possibility for the application of the porous scaffold and cytokine carrier for tissue engineering. Also, we used heparin for improving the biocompatibility of sodium alginate and the stability of TGF-b1. The release amount of TGF-b1 from TGF-b1 loaded alginate beads was analyzed for 5 weeks in vitro at phosphate buffered saline (PBS, pH 7.4) at 37oC. The stability of TGF-b1 during the preparation of alginate beads was evaluated by comparing the released amount of total TGF-b1, assayed TGF-b1 enzyme-linked immunosorbent assay (ELISA). It showed the open cell pore structure of alginate beads by scanning electron microscope (SEM). It could not be observed the difference of release amount of TGF-b1 from alginate beads by amount of TGF-b1 and addition of heparin. These results suggest that the released TGF-b1 from TGF-b1 loaded alginate beads can be very useful for the cartilage regeneration in the chondral tissue engineering area and successive studies are in progress.

      • KCI등재

        Fabrication and optimization of Nanodiamonds-composited poly(ε-caprolactone) fibrous matrices for potential regeneration of hard tissues

        안국영,류태경,Yu Ri Choi,Ju Ri Park,Min Jeong Lee,최성욱 한국생체재료학회 2018 생체재료학회지 Vol.22 No.2

        Background: Electrospun fibrous matrices are of great importance for tissue engineering and drug delivery device. However, relatively low mechanical strength of the fibrous matrix is one of the major disadvantages. NDs with a positive charge were selected to enhance the mechanical property of a composited fibrous matrix by inducing the intermolecular interaction between NDs and polymer chain. We prepared ND-composited poly (ε-caprolactone) (PCL) fibrous matrices by electrospinning and evaluated their performance in terms of mechanical strength and cell behaviors. Methods: A predetermined amounts of NDs (0.5, 1, 2 and 3 wt%) were added into PCL solution in a mixture of chloroform and 2,2,2-trifluoroethanol (8:2). ND-composited PCL (ND/PCL) fibrous matrices were prepared by electrospinning method. The tensile properties of the ND/PCL fibrous matrices were analyzed by using a universal testing machine. Mouse calvaria-derived preosteoblast (MC3T3-E1) was used for cell proliferation, alkaline phosphatase (ALP) assay, and Alizarin Red S staining. Results: The diameters of the fibrous matrices were adjusted to approximately 1.8 μm by changing process variables. The intermolecular interaction between NDs and PCL polymers resulted in the increased tensile strength and the favorable interfacial adhesion in the ND/PCL fibrous matrices. The ND/PCL fibrous matrix with 1 wt% of ND had the highest tensile strength among the samples and also improved proliferation and differentiation of MC3T3-E1 cells. Conclusions: Compared to the other samples, the ND/PCL fibrous matrix with 1 wt% of ND concentration exhibited superior performances for MC3T3 cells. The ND/PCL fibrous matrix can be potentially used for bone and dental tissue engineering.

      • KCI등재

        Effect of alginate concentration on chondrogenesis of co-cultured human adipose-derived stem cells and nasal chondrocytes: a biological study

        Y. W. Ewa-Choy,B. Pingguan-Murphy,N. A. Abdul-Ghani,J. Jahendran,K. H. Chua 한국생체재료학회 2017 생체재료학회지 Vol.21 No.4

        Background: The three-dimensional (3D) system is one of the important factors to engineer a biocompatible and functional scaffold for the applications of cell-based therapies for cartilage repair. The 3D alginate hydrogels system has previously been shown to potentially promote chondrogenesis. The chondrocytic differentiation of co-cultured adipose-derived stem cells (ADSCs) and nasal chondrocytes (NCs) within alginate constructs are hypothesized to be influenced by concentration of alginate hydrogel. In this study, we evaluated the effects of alginate concentration on chondrogenic differentiation of ADSCs and NCs co-cultured in a biological approach. Method: The co-cultured cells of 2:1 ADSCs-to-NCs ratio were encapsulated in alginate constructs in one of three concentrations (1.0%, 1.2% and 1.5%) and cultured under serum free conditions for 7 days. Cell viability, cell proliferation, immunohistochemical, gycosaminogylycans (GAG) synthesis, and gene expression were examined. Results: Overall, the 1.2% alginate concentration group was relatively effective in chondrocytic differentiation in comparable to other groups. The cell morphology, cell viability, and cell proliferation revealed initial chondrogenic differentiation by the formation of cell clusters as well as the high permeability for exchange of solutes. The formation of newly synthesis cartilage-specific extracellular matrix in 1.2% group was demonstrated by positive immunohistochemical staining of collagen type II. The co-cultured cells in 1.2% group highly expressed COL II, ACP and SOX-9, compared to 1. 0% and 1.5% groups, denote the retention of cartilaginous-specific phenotype by suppressing the undifferentiation stem cell markers of SOX-2 and OCT-4. The study showed 1.2% group was less likely to differentiate towards osteogenesis by downregulating hyperthrophy chondrocytic gene of COL X and osseous marker genes of OSC and OSP. Conclusion: This study suggests that variations in the alginate concentration of co-cultured ADSCs and NCs influenced the chondrogenesis. The remarkable biological performance on chondrogenic differentiation in regulating the concentration of alginate 3D culture provides new insights into the cell cross-talk and demonstrates the effectiveness in regenerative therapies of cartilage defects in tissue engineering.

      • KCI등재

        Application of black phosphorus nanodots to live cell imaging

        Yong Cheol Shin,Su-Jin Song,Yu Bin Lee,Moon Sung Kang,Hyun Uk Lee,오진우,한동욱 한국생체재료학회 2018 생체재료학회지 Vol.22 No.4

        Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

      • KCI등재

        Micro-CT – a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results

        Ibrahim Fatih Cengiz,Joaquim Miguel Oliveira,Rui L. Reis 한국생체재료학회 2018 생체재료학회지 Vol.22 No.4

        Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.

      • KCI등재

        Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation

        Ee-Seul Kang,Da-Seul Kim,Intan Rosalina Suhito,Wanhee Lee,Inbeom Song,Tae-HyungKim 한국생체재료학회 2018 생체재료학회지 Vol.22 No.2

        Background: In the past decade, stem cells, with their ability to differentiate into various types of cells, have been proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid materials, as well as further development of technologies to recover from diverse health conditions such as bone fracture and strokes. Main text: In this review, we discuss several prior studies regarding the application of various nanomaterials in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt). Conclusion: Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly discovered and/or synthesized nanomaterials (e.g., metal transition dichalcogenides, non-toxic quantum dots, and metal oxide frameworks) for stem cell-based regenerative therapies.

      • KCI등재

        Application of click chemistry in nanoparticle modification and its targeted delivery

        Gawon Yi,Jihwan Son,Jihye Yoo,Changhee Park,구희범 한국생체재료학회 2018 생체재료학회지 Vol.22 No.2

        Background: Click chemistry is termed as a group of chemical reactions with favorable reaction rate and orthogonality. Recently, click chemistry is paving the way for novel innovations in biomedical science, and nanoparticle research is a representative example where click chemistry showed its promising potential. Challenging trials with nanoparticles has been reported based on click chemistry including copper-catalyzed cycloaddition, strain-promoted azide-alkyne cycloaddition, and inverse-demand Diels-Alder reaction. Main body: Herein, we provide an update on recent application of click chemistry in nanoparticle research, particularly nanoparticle modification and its targeted delivery. In nanoparticle modification, click chemistry has been generally used to modify biological ligands after synthesizing nanoparticles without changing the function of nanoparticles. Also, click chemistry in vivo can enhance targeting ability of nanoparticles to disease site. Conclusion: These applications in nanoparticle research were hard or impossible in case of traditional chemical reactions and demonstrating the great utility of click chemistry.

      • KCI등재

        Recent trends in bioinks for 3D printing

        자나르다난 고피나단,노인섭 한국생체재료학회 2018 생체재료학회지 Vol.22 No.2

        Background: The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. Main body: This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Conclusion: Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼