RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ratiometric and discriminative visualization of autophagic processes with a novel dual-responded lysosome-specific fluorescent probe

        Fan Zheng,Yeshuo Ma,Jipeng Ding,Shuai Huang,Shengwang Zhang,Xueyan Huang,Bin Feng,Hongliang Zeng,Fei Chen,Wenbin Zeng 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background Autophagy is a critical self-eating pathway involved in numerous physiological and pathological processes. Lysosomal degradation of dysfunctional organelles and invading microorganisms is central to the autophagy mechanism and essential for combating disease-related conditions. Therefore, monitoring fluctuations in the lysosomal microenvironment is vital for tracking the dynamic process of autophagy. Although much effort has been put into designing probes for measuring lysosomal viscosity or pH separately, there is a need to validate the concurrent imaging of the two elements to enhance the understanding of the dynamic progression of autophagy. Methods Probe HFI was synthesized in three steps and was developed to visualize changes in viscosity and pH within lysosomes for real-time autophagy tracking. Then, the spectrometric determination was carried out. Next, the probe was applied to image autophagy in cells under nutrient-deprivation or external stress. Additionally, the performance of HFI to monitor autophagy was employed to evaluate acetaminophen-induced liver injury. Results We constructed a ratiometric dual-responsive probe, HFI, with a large Stokes shift over 200 nm, dualwavelength emission, and small background interference. The ratiometric fluorescent signal (R = I610/I460) of HFI had an excellent correlation with both viscosity and pH. More importantly, high viscosity and low pH had a synergistic promotion effect on the emission intensity of HFI, which enabled it to specially lit lysosomes without disturbing the inherent microenvironment. We then successfully used HFI to monitor intracellular autophagy induced by starvation or drugs in real-time. Interestingly, HFI also enabled us to visualize the occurrence of autophagy in the liver tissue of a DILI model, as well as the reversible effect of hepatoprotective drugs on this event. Conclusions In this study, we developed the first ratiometric dual-responsive fluorescent probe, HFI, for real-time revealing autophagic details. It could image lysosomes with minimal perturbation to their inherent pH, allowing us to track changes in lysosomal viscosity and pH in living cells. Ultimately, HFI has great potential to serve as a useful indicator for autophagic changes in viscosity and pH in complex biological samples and can also be used to assess drug safety.

      • KCI등재

        Functional insights from targeted imaging BACE1: the first near-infrared fluorescent probe for Alzheimer’s disease diagnosis

        Bi Anyao,Wu Junyong,Huang Shuai,Li Yongjiang,Zheng Fan,Ding Jipeng,Dong Jie,Xiang Daxiong,Zeng Wenbin 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        β-Secretase (BACE1) is the vital enzyme in the pathogenic processes of Alzheimer's disease (AD). However, the development of a powerful tool with sensitivity for BACE1 determination in vivo is a challenge.A novel NIR fluorescent probe HBAE was synthetized from 2-hydroxy-3-methylbenzaldehyde and 2-amino-benzenethiol by 5 steps. The fluorescence mechanism in the ESIPT systems of HBAE probe was insighted with time-dependent density functional theory (TD-DFT) at the TDPBE0 level with the def2-TZVP approach. The corresponding docking between HBAE and BACE1 (PDB: 5I3Y) was performed through the ducking method by DOCK6.8. Then the BBB permeability of HBAE is verified by transwell orifice plate. 22-month-old male AD-model (5XFAD) mice and age-matched wild-type mice were employed to observe the brain kinetics by intravenous injection. Finally, Immunohistochemistry was performed on the AD brain section to reveal the levels of BACE1 in hippocampus and cortex areas and other regions in AD mice through the brain tissue slices by HBAE.The NIR fluorescent probe HBAE was successfully applied in imaging BACE1 in AD model mice. The capability of HBAE in reflecting different level of BACE1 was performed by the specific imaging of the hippocampus region.We reported the first ESIPT near-infrared fluorescence probe HBAE for monitoring endogenous BACE1 in the AD live model mice, thus offering a versatile chemical tool for visualizing in the pathological processes of AD live brains. Remarkably, high resolution images showed the localization of red fluorescence stains in hippocampus of the AD brain. This study provides a promising way for functional insights from protein BACE1 in vivo.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼