RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prediction of negative peak wind pressures on roofs of low-rise building

        K. Balaji Rao,M.B. Anoop,P. Harikrishna,S. Selvi Rajan,Nagesh R. Iyer 한국풍공학회 2014 Wind and Structures, An International Journal (WAS Vol.19 No.6

        In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

      • SCIESCOPUS

        Cracking in reinforced concrete flexural members - A reliability model

        Rao, K. Balaji,Rao, T.V.S.R. Appa Techno-Press 1999 Structural Engineering and Mechanics, An Int'l Jou Vol.7 No.3

        Cracking of reinforced concrete flexural members is a highly random phenomenon. In this paper reliability models are presented to determine the probabilities of failure of flexural members against the limit states of first crack and maximum crackwidth. The models proposed take into account the mechanism of cracking. Based on the reliability models discussed, Eqs. (8) and (9) useful in the reliability-based design of flexural members are presented.

      • KCI등재후보

        Modelling of strains in reinforced concrete flexural members using alpha-stable distribution

        K. Balaji Rao,M. B. Anoop,K. Kesavan,S. R. Balasubramanian,K. Ravisankar,Nagesh R. Iyer 사단법인 한국계산역학회 2013 Computers and Concrete, An International Journal Vol.11 No.5

        Large fluctuations in surface strain at the level of steel are expected in reinforced concrete flexural members at a given stage of loading due to the emergent structure (emergence of new crack patterns). This has been identified in developing deterministic constitutive models for finite element applications in Ibrahimbegovic et al. (2010). The aim of this paper is to identify a suitable probability distribution for describing the large deviations at far from equilibrium points due to emergent structures, based on phenomenological, thermodynamic and statistical considerations. Motivated by the investigations reported by Prigogine (1978) and Rubi (2008), distributions with heavy tails (namely, alpha-stable distributions) are proposed for modeling the variations in strain in reinforced concrete flexural members to account for the large fluctuations. The applicability of alpha-stable distributions at or in the neighborhood of far from equilibrium points is examined based on the results obtained from carefully planned experimental investigations, on seven reinforced concrete flexural members. It is found that alpha-stable distribution performs better than normal distribution for modeling the observed surface strains in reinforced concrete flexural members at these points.

      • SCIESCOPUS

        Prediction of negative peak wind pressures on roofs of low-rise building

        Rao, K. Balaji,Anoop, M.B.,Harikrishna, P.,Rajan, S. Selvi,Iyer, Nagesh R. Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.19 No.6

        In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

      • KCI등재

        Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications

        P. Balaji Bhargav,V. Madhu Mohan,A.K. Sharma,V.V.R.N. Rao 한국물리학회 2009 Current Applied Physics Vol.9 No.1

        Solid polymer electrolytes based on poly (vinyl alcohol) (PVA) complexed with sodium fluoride (NaF) at different weight percent ratios were prepared using solution cast technique. The structural properties of these electrolyte films were examined by XRD studies. The XRD data revealed that the amorphous domains of PVA polymer matrix increased with increase of NaF salt concentration. The complexation of the salt with the polymer was confirmed by FT-IR studies. Electrical conductivity was measured in the temperature range of 303–373 K and the conductivity was found to increase with the increase of dopant concentration as well as temperature. The dielectric constant (ε') increased with the increase in temperature and decreased with the increase in frequency. A loss peak was identified at 365 K in the dielectric loss spectra and is attributed to the orientation of polar groups. Measurement of transference number was carried out to investigate the nature of charge transport in these polymer electrolyte films using Wagner’s polarization technique and Watanabe technique. Transport number data showed that the charge transport in these polymer electrolyte systems was predominantly due to ions and in particular due to anions. Using these polymer electrolytes, solid state electrochemical cells were fabricated. Various cell parameters like open circuit voltage (OCV), short circuit current (SCC), power density and energy density were determined. Solid polymer electrolytes based on poly (vinyl alcohol) (PVA) complexed with sodium fluoride (NaF) at different weight percent ratios were prepared using solution cast technique. The structural properties of these electrolyte films were examined by XRD studies. The XRD data revealed that the amorphous domains of PVA polymer matrix increased with increase of NaF salt concentration. The complexation of the salt with the polymer was confirmed by FT-IR studies. Electrical conductivity was measured in the temperature range of 303–373 K and the conductivity was found to increase with the increase of dopant concentration as well as temperature. The dielectric constant (ε') increased with the increase in temperature and decreased with the increase in frequency. A loss peak was identified at 365 K in the dielectric loss spectra and is attributed to the orientation of polar groups. Measurement of transference number was carried out to investigate the nature of charge transport in these polymer electrolyte films using Wagner’s polarization technique and Watanabe technique. Transport number data showed that the charge transport in these polymer electrolyte systems was predominantly due to ions and in particular due to anions. Using these polymer electrolytes, solid state electrochemical cells were fabricated. Various cell parameters like open circuit voltage (OCV), short circuit current (SCC), power density and energy density were determined.

      • KCI등재

        Low Pull-in-Voltage RF-MEMS Shunt Switch for 5G Millimeter Wave Applications

        P. Ashok Kumar,K. Srinivasa Rao,B. Balaji,M. Aditya,N. P. Maity,Reshmi Maity,Santanu Maity,Ameen El Sinawi,Koushik Guha,K. Girija Sravani 한국전기전자재료학회 2021 Transactions on Electrical and Electronic Material Vol.22 No.6

        RF MEMS switches have been employed in many commercial and defense applications due to their high potentiality at microwave and millimeter wave frequencies. In this paper, an RF MEMS shunt switch is designed with perforations and without perforations and simulated using iterative meanders for millimeter wave 5G applications. The proposed iterative meander offers a low spring-constant of 0.68 N/m and reduces the pull-in-voltage upto 1.8 V. The proposed perforated switch design is more reliable which operates with less transition time of 11.2 μs with a quality factor of 1.69. The switch possesses high capacitance ratio of 63. During ON condition, the switch shows low insertion loss of − 0.24 dB at 41 GHz and high isolation of − 46.7 dB at 38 GHz. The performance of the switch is analyzed by simulating it using COMSOL Multiphysics 5.2v (FEM tool). The obtained simulation results shows close approximation with the theoretical results and the switch is efficiently used for 5G millimeter wave applications.

      • SCIESCOPUS

        Stochastic finite element based seismic analysis of framed structures with open-storey

        Manjuprasad, M.,Gopalakrishnan, S.,Rao, K. Balaji Techno-Press 2003 Structural Engineering and Mechanics, An Int'l Jou Vol.15 No.4

        While constructing multistorey buildings with reinforced concrete framed structures it is a common practice to provide parking space for vehicles at the ground floor level. This floor will generally consist of open frames without any infilled walls and is called an open-storey. From a post disaster damage survey carried out, it was noticed that during the January 26, 2001 Bhuj (Gujarat, India) earthquake, a large number of reinforced concrete framed buildings with open-storey at ground floor level, suffered extensive damage and in some cases catastrophic collapse. This has brought into sharp focus the need to carry out systematic studies on the seismic vulnerability of such buildings. Determination of vulnerability requires realistic structural response estimations taking into account the stochasticity in the loading and the system parameters. The stochastic finite element method can be effectively used to model the random fields while carrying out such studies. This paper presents the details of stochastic finite element analysis of a five-storey three-bay reinforced concrete framed structure with open-storey subjected to standard seismic excitation. In the present study, only the stochasticity in the system parameters is considered. The stochastic finite element method used for carrying out the analysis is based on perturbation technique. Each random field representing the stochastic geometry/material property is discretised into correlated random variables using spatial averaging technique. The uncertainties in geometry and material properties are modelled using the first two moments of the corresponding parameters. In evaluating the stochastic response, the cross-sectional area and Young' modulus are considered as independent random fields. To study the influence of correlation length of random fields, different correlation lengths are considered for random field discretisation. The spatial expectations and covariances for displacement response at any time instant are obtained as the output. The effect of open-storey is modelled by suitably considering the stiffness of infilled walls in the upper storey using cross bracing. In order to account for changes in soil conditions during strong motion earthquakes, both fixed and hinged supports are considered. The results of the stochastic finite element based seismic analysis of reinforced concrete framed structures reported in this paper demonstrate the importance of considering the effect of open-storey with appropriate support conditions to estimate the realistic response of buildings subjected to earthquakes.

      • KCI등재

        Performance-based remaining life assessment of reinforced concrete bridge girders

        M. B. Anoop,K. Balaji Rao,B. K. Raghuprasad 사단법인 한국계산역학회 2016 Computers and Concrete, An International Journal Vol.18 No.1

        Performance-based remaining life assessment of reinforced concrete bridge girders subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

      • KCI등재

        An Improved Method for Estimation of Elastic Lateral Stiffness of Brick Masonry Shear Walls with Openings

        S. R. Balasubramanian,K. Balaji Rao,Dhiman Basu,M. B. Anoop,C. V. Vaidyanathan 대한토목학회 2011 KSCE JOURNAL OF CIVIL ENGINEERING Vol.15 No.2

        From a review of literature, it is found that while few methods are proposed by various researchers for estimation of lateral stiffness of brick masonry walls with openings, these methods are suitable for strong spandrel-weak pier condition. For weak spandrel-strong pier condition, these methods over estimate the stiffness. An improved method for estimation of stiffness of brick masonry shear walls with opening is presented in this paper. For the weak spandrel-strong pier condition, they overestimate the stiffness of the wall. The proposed method is applicable to both strong spandrel-weak pier and weak spandrel-strong pier conditions. It has been observed that the results of the proposed method are generally in good agreement with the results of finite element analysis and experimental results and are better than the other methods available in literature.

      • KCI등재

        Methodologies for numerical modelling of prestressed concrete box-girder for long term deflection

        M.C. Lalanthi,P. Kamatchi,K. Balaji Rao,S. Saibabu 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.21 No.3

        In this paper, two methods M1 and M2 to determine long-term deflection through finite element analyses including the effect of creep and relaxation are proposed and demonstrated for a PSC box-girder. In both the methods, the effect of creep is accounted by different models from international standards viz., ACI-209R-92, CEB MC 90-99, B3 and GL2000. In M1, prestress losses due to creep and relaxation and age adjusted effective modulus are estimated through different models and have been used in finite element (FE) analyses for individual time steps. In M2, effects of creep and relaxation are implemented through the features of FE program and the time dependent analyses are carried out in single step. Variations in time-dependent strains, prestress losses, stresses and deflections of the PSC box-girder bridge through M1 and M2 are studied. For the PSC girder camber obtained from both M1 and M2 are lesser than simple bending theory based calculations, this shows that the camber is overestimated by simple bending theory which may lead to non-conservative design. It is also observed that stresses obtained from FEM for bottom fibre are lesser than the stresses obtained from bending theory at transfer for the PSC girder which may lead to non-conservative estimates.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼