RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Properties Augmentation of Cast Hypereutectic Al–Si Alloy Through Friction Stir Processing

        William P. Bates,Vivek Patel,Harikrishna Rana,Joel Andersson,Jeroen De Backer,Mattias Igestrand,Livan Fratini 대한금속·재료학회 2023 METALS AND MATERIALS International Vol.29 No.1

        The present endeavour is to augment mechanical attributes via friction stir processing (FSP) in hypereutectic aluminium–siliconcastings by the means of microstructural modifications and defects reduction. Wherein, the study proceeds with mainlytwo approaches namely, alteration in tool revolution (TR) and the number of FSP passes. The prepared specimens wereevaluated investigating volume fraction of porosities, microstructural characterizations and microhardness. Therefrom, thespecimen with highest number of passes delivered most uniform properties resulting from the reduction in casting porositiesand refined silicon particle uniform distribution throughout friction stir processed zone. This endeavour may be consideredas a footstep towards more industrial readied material transformation.

      • SCIESCOPUS

        Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence

        Keerthana, M.,Harikrishna, P. Techno-Press 2017 Wind and Structures, An International Journal (WAS Vol.25 No.3

        Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.

      • SCIESCOPUS

        Bi-modal spectral method for evaluation of along-wind induced fatigue damage

        Gomathinayagam, S.,Harikrishna, P.,Abraham, A.,Lakshmanan, N. Techno-Press 2006 Wind and Structures, An International Journal (WAS Vol.9 No.4

        Several analytical procedures available in literature, for the evaluation of wind induced fatigue damage of structures, either assume the wide band random stress variations as narrow band random process or use correction factors along with narrow band assumption. This paper compares the correction factors obtained using the Rainflow Cycle (RFC) counting of the measured stress time histories on a lamp mast and a lattice tower, with those evaluated using different frequency domain methods available in literature. A Bi-modal spectral method has been formulated by idealising the single spectral moment method into two modes of background and resonant components, as considered in the gust response factor, for the evaluation of fatigue of slender structures subjected to "along-wind vibrations". A closed form approximation for the effective frequency of the background component has been developed. The simplicity and the accuracy of the new method have been illustrated through a case study by simulating stress time histories at the base of an urban light pole for different mean wind speeds. The correction factors obtained by the Bi-modal spectral method have been compared with those obtained from the simulated stress time histories using RFC counting method. The developed Bi-modal method is observed to be a simple and easy to use alternative to detailed time and frequency domain fatigue analyses without considerable computational and experimental efforts.

      • Numerical investigations on the effect of mean incident wind on flutter onset of bridge deck sections

        M. Keerthana,P. Harikrishna 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.82 No.4

        The effect of mean angle of wind attack on the flutter critical wind speed of two generic bridge deck cross-sections, viz, one closed box type streamlined section (deck-1) and closed box trapezoidal bluff type section with extended flanges/overhangs (deck-2) type of section have been studied using Computational Fluid Dynamics (CFD) based forced vibration simulation method. Owing to the importance of the effect of the amplitude of forcing oscillation on the flutter onset, its effect on the flutter derivatives and flutter onset have been studied, especially at non-zero mean angles of wind attack. The flutter derivatives obtained have been used to evaluate flutter critical wind speeds and flutter index of the deck sections at non-zero mean angles of wind attack studied and the same have been validated with those based on experimental results reported in literature. The value of amplitude of forcing oscillation in torsional degree of freedom for CFD based simulations is suggested to be in the range of 0.5° to 2°, especially for bluff bridge deck sections. Early onset of flutter from numerical simulations, thereby conservative estimate of occurrence of instability has been observed from numerical simulations in case of bluff bridge deck section. The study aids in gaining confidence and the extent of applicability of CFD during early stages of bridge design, especially towards carrying out studies on mean incident wind effects.

      • KCI등재

        Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence

        M. Keerthana,P. Harikrishna 한국풍공학회 2017 Wind and Structures, An International Journal (WAS Vol.25 No.3

        Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.

      • KCI등재

        Bi-modal spectral method for evaluation of along-wind induced fatigue damage

        S. Gomathinayagam,P. Harikrishna,A. Abraham,N. Lakshmanan 한국풍공학회 2006 Wind and Structures, An International Journal (WAS Vol.9 No.4

        Several analytical procedures available in literature, for the evaluation of wind induced fatigue damage of structures, either assume the wide band random stress variations as narrow band random process or use correction factors along with narrow band assumption. This paper compares the correction factors obtained using the Rainflow Cycle (RFC) counting of the measured stress time histories on a lamp mast and a lattice tower, with those evaluated using different frequency domain methods available in literature. A Bi-modal spectral method has been formulated by idealising the single spectral moment method into two modes of background and resonant components, as considered in the gust response factor, for the evaluation of fatigue of slender structures subjected to along-wind vibrations. A closed form approximation for the effective frequency of the background component has been developed. The simplicity and the accuracy of the new method have been illustrated through a case study by simulating stress time histories at the base of an urban light pole for different mean wind speeds. The correction factors obtained by the Bi-modal spectral method have been compared with those obtained from the simulated stress time histories using RFC counting method. The developed Bi-modal method is observed to be a simple and easy to use alternative to detailed time and frequency domain fatigue analyses without considerable computational and experimental efforts.

      • KCI등재

        Prediction of negative peak wind pressures on roofs of low-rise building

        K. Balaji Rao,M.B. Anoop,P. Harikrishna,S. Selvi Rajan,Nagesh R. Iyer 한국풍공학회 2014 Wind and Structures, An International Journal (WAS Vol.19 No.6

        In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

      • SCIESCOPUS

        Prediction of negative peak wind pressures on roofs of low-rise building

        Rao, K. Balaji,Anoop, M.B.,Harikrishna, P.,Rajan, S. Selvi,Iyer, Nagesh R. Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.19 No.6

        In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼