RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        수치해석에 의한 TSV 구조의 열응력 및 구리 Protrusion 연구

        정훈선,이미경,좌성훈,Jung, Hoon Sun,Lee, Mi Kyoung,Choa, Sung-Hoon 한국마이크로전자및패키징학회 2013 마이크로전자 및 패키징학회지 Vol.20 No.2

        Through-Silicon Via (TSV) 기술은 3차원 적층 패키징를 위한 핵심 기술로서 큰 관심을 받고 있다. 그러나 TSV 기술은 아직 다양한 공정상의 문제와 신뢰성 문제를 해결해야 하는 난제가 남아 있다. 특히 구리 비아(via)와 실리콘 기판의 큰 열팽창계수의 차이로 인한 열응력은 계면 박리, 크랙 발생, 구리 protrusion 등 다양한 신뢰성 문제를 발생시킨다. 본 연구에서는 구리 TSV 구조의 열응력을 수치해석을 이용하여 분석하였으며, 3차원 TSV 비아와 실리콘 기판의 응력 및 변형을 해석하였다. 비아의 크기, 비아와 비아 사이의 간격 및 비아의 밀도가 TSV 구조의 응력에 미치는 영향을 분석하였으며, 또한 어닐링(annealing) 온도 및 비아의 크기가 구리 protrusion에 미치는 영향을 관찰하였다. 구리 TSV 구조의 신뢰성을 향상시키기 위해서는 적절한 비아와 비아 사이의 간격을 유지한 상태에서, 비아의 크기 및 비아의 밀도는 작아야 한다. 또한 구리 protrusion을 감소시키기 위해서는 비아의 크기 및 어닐링 공정과 같은 공정의 온도를 낮추어야 한다. 본 연구의 결과는 TSV 구조의 열응력과 관련된 신뢰성 이슈를 이해하고, TSV 구조의 설계 가이드라인을 제공하는데 도움을 줄 수 있을 것으로 판단된다. The through-silicon via (TSV) technology is essential for 3-dimensional integrated packaging. TSV technology, however, is still facing several reliability issues including interfacial delamination, crack generation and Cu protrusion. These reliability issues are attributed to themo-mechanical stress mainly caused by a large CTE mismatch between Cu via and surrounding Si. In this study, the thermo-mechanical reliability of copper TSV technology is investigated using numerical analysis. Finite element analysis (FEA) was conducted to analyze three dimensional distribution of the thermal stress and strain near the TSV and the silicon wafer. Several parametric studies were conducted, including the effect of via diameter, via-to-via spacing, and via density on TSV stress. In addition, effects of annealing temperature and via size on Cu protrusion were analyzed. To improve the reliability of the Cu TSV, small diameter via and less via density with proper via-to-via spacing were desirable. To reduce Cu protrusion, smaller via and lower fabrication temperature were recommended. These simulation results will help to understand the thermo-mechanical reliability issues, and provide the design guideline of TSV structure.

      • KCI등재

        초박형 FPCB의 유연 내구성 연구

        정훈선,은경태,이은경,정기영,최성훈,좌성훈,Jung, Hoon-Sun,Eun, Kyoungtae,Lee, Eun-Kyung,Jung, Ki-Young,Choi, Sung-Hoon,Choa, Sung-Hoon 한국마이크로전자및패키징학회 2014 마이크로전자 및 패키징학회지 Vol.21 No.4

        본 연구에서는 스퍼터링 공정으로 제작된 FCCL(flexible copper clad laminate)을 이용하여 초박형 FPCB를 개발하였다. 또한 구리 박막과 폴리이미드 기판의 접착력을 향상시키기 위한 NiMoNb 접착층을 적용하였다. 개발된 초박형 FPCB의 기계적 내구성과 유연성은 인장, 비틀림 및 굽힘 피로 수명시험을 이용하여 검증하였다. 인장 시험 결과 초박형 FPCB는 약 7% 까지 인장이 가능하였으며, 비틀림 각도 $120^{\circ}$ 까지의 내구성과 유연성을 갖고 있음을 알 수 있었다. 또한 초박형 FPCB는 10,000회의 굽힘 피로시험에도 파괴가 발생하지 않았다. 수치해석에 의한 응력 및 변형율의 계산 결과, 인장 시에 초박형 FPCB에 걸리는 최대 응력 및 변형률은 기존 FPCB에 비하여 크게 차이가 나지 않음을 알 수 있었다. 결론적으로 초박형 FPCB의 강건성은 기존 FPCB에 비하여 약간 열세이나, 제품에 적용하기에는 충분한 강건성과 신뢰성을 갖고 있다고 판단된다. In this study, we developed an ultra-thin flexible printed circuit board(FPCB) using the sputtered flexible copper clad laminate. In order to enhance the adhesion between copper and polyimide substrate, a NiMoNb addition layer was applied. The mechanical durability and flexibility of the ultra-thin FPCB were characterized by stretching, twisting, bending fatigue test, and peel test. The stretching test reveals that the ultra-thin FPCB can be stretched up to 7% without failure. The twisting test shows that the ultra-thin FPCB can withstand an angle of up to $120^{\circ}$. In addition, the bending fatigue test shows that the FPCB can withstand 10,000 bending cycles. Numerical analysis of the stress and strain during stretching indicates the strain and the maximum von Mises stress of the ultra-thin FPCB are comparable to those of the conventional FPCB. Even though the ultra-thin FPCB shows slightly lower durability than the conventional FPCB, the ultra-thin FPCB has enough durability and robustness to apply in industry.

      • KCI등재

        Numerical Prediction of Solder Fatigue Life in a High Power IGBT Module Using Ribbon Bondin

        서일웅,정훈선,이영호,좌성훈 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.5

        This study focused on predicting the fatigue life of an insulated gate bipolar transistor (IGBT) power module for electric locomotives. The effects of different wiring technologies, including aluminum wires, copper wires, aluminum ribbons, and copper ribbons, on solder fatigue life were investigated to meet the high power requirement of the IGBT module. The module’s temperature distribution and solder fatigue behavior were investigated through coupled electro-thermo-mechanical analysis based on the finite element method. The ribbons attained a chip junction temperature that was 30° C lower than that attained with conventional round wires. The ribbons also exhibited a lower plastic strain in comparison with the wires. However, the difference in plastic strain and junction temperature among the different ribbon materials was relatively small. The ribbons also exhibited different crack propagation behaviors relative to the wires. For the wires, the cracks initiated at the outmost edge of the solder, whereas for the ribbons, the cracks grew in the solder layer beneath the ribbons. Comparison of fatigue failure areas indicated that ribbon bonding technology could substantially enhance the fatigue life of IGBT modules and be a potential candidate for high power modules.

      • KCI등재

        IGBT 전력반도체 모듈 패키지의 방열 기술

        서일웅,정훈선,이영호,김영훈,좌성훈,Suh, Il-Woong,Jung, Hoon-Sun,Lee, Young-Ho,Kim, Young-Hun,Choa, Sung-Hoon 한국마이크로전자및패키징학회 2014 마이크로전자 및 패키징학회지 Vol.21 No.3

        Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

      • KCI등재

        고온 신뢰성 시험에서 발생된 플렉서블 OLED의 휨 변형

        이미경,서일웅,정훈선,이정훈,좌성훈,Lee, Mi-Kyoung,Suh, Il-Woong,Jung, Hoon-Sun,Lee, Jung-Hoon,Choa, Sung-Hoon 한국마이크로전자및패키징학회 2016 마이크로전자 및 패키징학회지 Vol.23 No.1

        플렉서블 OLED는 매우 다양한 유기(organic) 및 무기 물질로 이루어져 있으며, 각 층을 증착하는 과정에 의하여 고온에 의한 휨(warpage)이 발생한다. 휨으로 인하여 발생한 굽힘 변형은 후속 공정에 많은 영향을 미치며, 궁극적으로 생산 수율 및 신뢰성을 저하시킨다. 본 연구에서는 플렉서블 OLED 소자의 고온 환경신뢰성 시험 및 공정 단계에서 발생하는 휨 변형을 수치해석을 이용하여 예측하였으며 실험 결과와 비교하였다. 이를 통하여 휨에 가장 큰 영향을 미치는 재료를 파악하고, 궁극적으로 휨을 최소화 함으로써 플렉서블 OLED의 신뢰성을 향상시키고자 하였다. 휨의 측정 및 수치해석 결과, 편광 필름과 베리어 필름이 휨에 많은 영향을 줌을 알 수 있었으며, OCA가 휨에 미치는 영향은 미미하였다. 플렉서블 OLED의 휨에 가장 큰 영향을 주는 소재는 plastic cover이였으며, 휨을 최소화하기 위한 plastic cover 소재의 최적 물성을 실험계획법으로 계산한 결과, 탄성 계수는 4.2 GPa, 열팽창계수는 $20ppm/^{\circ}C$ 일 경우 플렉서블 OLED의 휨은 1 mm 이하가 됨을 알 수 있었다. Flexible organic light-emitting diode (OLED) devices consist of multi-stacked thin films or layers comprising organic and inorganic materials. Due to thermal coefficient mismatch of the multi-layer films, warpage of the flexible OLED is generated during high temperature process of each layer. This warpage will create the critical issues for next production process, consequently lowering the production yield and reliability of the flexible OLED. In this study, we investigate the warpage behavior of the flexible OLED for each bonding process step of the multi-layer films using the experimental and numerical analysis. It is found that the polarizer film and barrier film show significant impact on warpage of flexible OLED, while the impact of the OCA film on warpage is negligible. The material that has the most dominant impact on the warpage is a plastic cover. In order to minimize the warpage of the flexible OLED, we estimate the optimal material properties of the plastic cover using design of experiment. It is found that the warpage of the flexible OLED is reduced to less than 1 mm using a cover plastic of optimized properties which are the elastic modulus of 4.2 GPa and thermal expansion coefficient of $20ppm/^{\circ}C$.

      • KCI등재

        수치해석을 이용한 구리기둥 범프 플립칩 패키지의 열압착 접합 공정 시 발생하는 휨 연구

        권오영(Oh Young Kwon),정훈선(Hoon Sun Jung),이정훈(Jung Hoon Lee),좌성훈(Sung-Hoon Choa) 대한기계학회 2017 大韓機械學會論文集A Vol.41 No.6

        반도체 플립칩 패키지에서 구리기둥 범프 기술은 미세 피치 및 높은 I/O 밀도로 인해 기존의 솔 더 범프 접합 기술을 대체하는 중이다. 그러나 구리기둥 범프는 리플로우 접합 공정 사용 시, 구리 범프의 높은 강성으로 인해 패키지에 높은 응력을 초래한다. 따라서 최근에 플립칩 공정에서 발생하는 패키지의 높은 응력 및 휨을 감소시키기 위해 열압착 공정 기술이 시도되고 있다. 본 연구에서는 플립칩 패키지의 열압착 공정과 리플로우 공정에서 발생하는 휨에 대해 수치해석을 이용하여 분석하였다. 패키지의 휨 최소화를 위한 본딩 공정 조건 최적화를 위해 본딩 툴 및 스테이지의 온도, 본딩 압력에 대한 휨 영향을 검토하였다. 또한 칩과 기판의 면적 및 두께가 패키지의 휨에 주는 영향을 분석하였다. 이를 통해, 향후 미세피치 접합부 형성 시 휨 및 응력을 최소화하기 위한 가이드라인을 제시하고자 하였다. In flip chip technology, the conventional solder bump has been replaced with a copper (Cu) pillar bump owing to its higher input/output (I/O) density, finer pitch, and higher reliability. However, Cu pillar bump technology faces several issues, such as interconnect shorting and higher low-k stress due to stiffer Cu pillar structure when the conventional reflow process is used. Therefore, the thermal compression bonding (TCB) process has been adopted in the flip chip attachment process in order to reduce the package warpage and stress. In this study, we investigated the package warpage induced during the TCB process using a numerical analysis. The warpage of the TCB process was compared with that of the reflow process.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼