RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        백삼, 홍삼과 흑삼 추출물의 정성적 구별법에 관한 연구

        이영상 ( Young Sang Lee ),임덕호 ( Deok Ho Im ),양진철 ( Jin Chul Yang ),노덕수 ( Deok Soo Noh ),김광일 ( Kwang Il Kim ),오수교 ( Soo Kyo Oh ),최교찬 ( Kyo Chan Choi ),차윤환 ( Yun Hwan Cha ) 한국식품영양학회 2011 韓國食品營養學會誌 Vol.24 No.1

        This study analyzed the maltol quality, composition ratio of fatty acids, and contents of phenolic compounds in white ginseng extracts(four types), red ginseng extracts(five types), Black ginseng extracts(two types), and Chinese ginseng extracts(nine types). By examining patterns in these measurements, we determined the characteristic factors of the extracts and measured the possibility of qualitative analysis. In the analysis of maltol using TLC, white ginseng extracts were not detected while red and Black ginseng extracts were detected, so the possibility of detection was considered as a characteristic factor for qualitative analysis. Regarding the composition of fatty acids, palmitic and linoleic acids were the main fatty acids in theginseng extracts palmitic acid was high in white ginseng extracts while linoleic was low in red ginseng extracts. Regarding the ratio(Pal/Lin) of the two fatty acids, there was a large difference between white ginseng extracts(56.7~64.3%) and red ginseng extracts(32.0~38.5%), and these figures seemed to be characteristic factors for the analysis. For the phenolic compounds, extracts contained maltol, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, and cinnamic acid. White ginseng extracts contained similar percentages of phenolic compounds while red ginseng extracts had high maltol content. According to the measurement results of the percentages of maltol and cinnamic acid, white ginseng extracts showed values below five, whereas red and Black ginseng extracts showed 53~289, which was also a characteristic factor for qualitative analysis. Consequently, we found that we can differentiate between ginseng extracts using characteristic factors that we analyzed in an experiment on white ginseng extracts from China.

      • SCIESCOPUSKCI등재

        Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method

        Lee, Myung-Hee,Rhee, Young-Kyoung,Choi, Sang-Yoon,Cho, Chang-Won,Hong, Hee-Do,Kim, Kyung-Tack The Korean Society of Ginseng 2017 Journal of Ginseng Research Vol.41 No.3

        Background: In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. Methods: The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at $30^{\circ}C$ for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. Results and Conclusion: The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

      • SCIESCOPUSKCI등재

        Effect of $\alpha$-Amylase on the Qualities of Red Ginseng Extract

        Kim, Na-Mi,Lee, Jong-Soo,Lee, Byung-H. The Korean Society of Ginseng 2000 Journal of Ginseng Research Vol.24 No.3

        In order to improve the qualities of red ginseng extract and decrease precipitate formation in ginseng drink, red ginseng extract were hydrolyzed with ${\alpha}$-Amylase and characteristics of the hydrolyzed ginseng extract were investigated. 1.08% of isomaltose were produced and glucose content was increased from 2.83% to 11.03% in the hydrolyzed red ginseng extract. Total ginsenoside content of the hydrolyzed ginseng extract were decreased from 1,661 mg/100g extract to 1,389 mg/100g extract. The hydrolyzed ginseng extract enhanced the growth of Lactobacillus casei, Lactobacillus rhamnosus and Lactobacillus helveticus. Bitterness and astringency of the hydrolyzed ginseng extract were lower than those of the ginseng extract Precipitate formations in ginseng drink prepared with the hydrolyzed ginseng extract were significantly reduced in the storage conditions of 40$^{\circ}C$ for 4 weeks compared to those of control.

      • KCI등재

        Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method

        이명희,이영경,최상윤,조장원,홍희두,김경탁 고려인삼학회 2017 Journal of Ginseng Research Vol.41 No.3

        Background: In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. Methods: The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at 30C for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. Results and Conclusion: The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

      • SCIESCOPUSKCI등재

        Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method

        Myung-Hee Lee,Young-Kyoung Rhee,Sang-Yoon Choi,Chang-Won Cho,Hee-Do Hong,Kyung-Tack Kim 고려인삼학회 2017 Journal of Ginseng Research Vol.41 No.3

        Background: In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. Methods: The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at 30℃ for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. Results and Conclusion: The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

      • KCI등재

        레시틴이 강화된 인삼 추출물 제조 방법

        박순혜(Soon-Hye Park),김일웅(Il-Woong Kim),김동만(Dong-Man Kim),김시관(Si-Kwan Kim) 한국식품영양과학회 2006 한국식품영양과학회지 Vol.35 No.9

        본 연구는 레시틴이 강화된 홍삼 추출물을 제조하는 방법을 개발하기 위하여 수행되었다. 우선 대두유 레시틴을 대두유와 일정 비율로 혼합하여 LCS를 제조하였다. 고형분 함량이 10%인 홍삼 물추출물과 LCS의 비율을 3:1로 하여 혼합하여 vortexing한 뒤 혼합액을 원심분리하여 오일 층과 수용액 층을 분리하였다. 수용액 층에 대하여는 레시틴과 사포닌의 정성 및 정량분석을 행하였다. 홍삼 추출물에 대하여는 LCS처리 전?후 지방산 조성과 조지방 함량도 조사하였다. 또한, LCS를 처리한 홍삼 추출물에 대하여는 농축 후 4℃, 25℃, 40℃/6개월 Falcon 튜브에 넣어 보관하면서 상부 1/3과 하부 1/3의 레시틴 함량을 조사함으로써 안정성을 조사하였다. LCS처리로 인한 홍삼 추출물의 조지방 함량은 변화 없었고, 지방산 조성 변화는 oleic acid의 증가 이외에는 특별한 결과를 관찰할 수 없었다. 홍삼 추출물로의 레시틴 이행율은 대두유에 대한 레시틴의 첨가 비율이 증가함에 따라 정비례적으로 증가하였다. LCS-처리 전?후 홍삼 추출물 중의 지방산 조성과 진세노사이드 함량은 유의한 차이가 없는 것으로 나타났다. TLC 및 HPLC 조사 결과 역시 LCS-처리 전ㆍ후 차이가 없는 것으로 나타났다. 상기 3가지 조건에 6개월간 보관하면서 보관용 튜브의 상ㆍ하부 1/3의 레시틴 함량과 사포닌 조성 변화를 조사한 결과 차이가 없는 것으로 보아 LCS-처리 홍삼 농축액의 안정성은 만족할 만한 것으로 사료된다. 이상의 결과로부터 레시틴 함유 대두유 혼합액으로 홍삼 추출물을 처리하는 방법은 홍삼 추출물에 레시틴을 강화시킬 수 있는 안정성이 뛰어나고 처리 공정이 간편한 방법이라 판단한다. This study was carried out to develop the method of preparing lecithin-fortified ginseng extract. Firstly, soybean lecithin was mixed with soybean oil (LCS) in varying ratio (2.5%, 5%, 10% and 20%). Then, one part volume of LCS was mixed with three parts volume of ginseng extract with 10% solid matter content and the mixture was vortexed vigorously. Finally, the mixture was spinned at the speed of 3,000 rpm for 30 minutes to separate oil and aqueous ginseng extract layer (AG). AG was then subjected to qualitative and quantitative analysis of phospholipids and ginsenosides. Fatty acid composition and crude fat content before and after LCS was determined. Stability of lecithin in ginseng extract was determined by analyzing phospholipid content in the one third upper and lower layer of the concentrated AG in Falcon tubes while storing the LCS-treated concentrated AG in 4, 25 and 40℃ for 6 months. Ratio of lecithin transferred to AG increased with the increase in lecithin content of soybean oil. There was no significant change in fatty acid composition and crude fat content, and ginsenoside content in the ginseng extract before and after LCS treatment. TLC and HPLC pattern of saponin fraction before and after treating the ginseng extract with LCS demonstrated no observable difference. There was no change in lecithin content in the upper and lower one third layer of ginseng extract in the tubes after storing the concentrated AG in 4, 25 and 40℃ for 6 months. Ginsenosides HPLC pattern was not changed when stored the LCS-treated ginseng extract in those conditions for six months, indicating satisfiable stability of the LCS-treated concentrated ginseng extract. From these results, it can be concluded that treatment of the ginseng extract with lecithin containing soybean oil is a labor-effective method with satisfiable stability to fortify lecithins to ginseng extract.

      • KCI등재

        A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models

        Evelyn Saba,Yuan Yee Lee,김민기,김승형,홍승복,MAN HEE RHEE 고려인삼학회 2018 Journal of Ginseng Research Vol.42 No.4

        Background: Ginseng (Panax ginseng) is a widely used traditional herbal supplement that possesses various health-enhancing efficacies. Various ginseng products are available in market, especially in the Korean peninsula, in the form of drinks, tablets, and capsules. The different ginseng types include the traditional red ginseng extract (RGE), white ginseng, and black red ginseng extract (BRGE). Their fermented and enzyme-treated products are also available. Different treatment regimens alter the bioavailability of certain compounds present in the respective ginseng extracts. Therefore, in this study, we aimed to compare the antioxidant and immune-stimulating activities of RGE, BRGE, and fermented red ginseng extract (FRGE). Methods: We used an acetaminophen-induced oxidative stress model for investigating the reduction of oxidative stress by RGE, BRGE, and FRGE in Sprague Dawley rats. A cyclophosphamide-induced immunosuppression model was used to evaluate the immune-stimulating activities of these ginseng extracts in BALB/c mice. Results: Our results showed that most prominently, RGE (in almost all experiments) exhibited excellent antioxidant effects via increasing superoxide dismutase, catalase, and glutathione peroxidase activities in the liver and decreasing serum 8-hydroxy-20-deoxyguanosine, aspartate aminotransferase, and lactate dehydrogenase levels compared with the groups treated with FRGE and BRGE. Moreover, RGE significantly increased the number of white blood cells, especially T and B lymphocytes, and antibody-forming cells in the spleen and thymus, and it also activated a number of immune cell subtypes. Conclusion: Taken together, these results indicate that RGE is the best supplement for consumption in everyday life for overall health-enhancing properties.

      • KCI등재

        홍삼액의 알코올 발효 특성 모니터링

        김성호(Seong Ho Kim),강복희(Bok Hee Kang),노상균(Sang Gyun Noh),김종국(Jong Guk Kim),이상한(Sang Han Lee),이진만(Jin Man Lee) 한국생명과학회 2008 생명과학회지 Vol.18 No.4

        홍삼액의 첨가에 따른 발효가능성을 알아보기 위하여 홍삼액의 첨가량을 달리하여 발효특성을 조사하였다. 본 실험에서는 Saccharomyces cerevisiae JF-Y3을 이용하여 발효를 실시하였으며, 홍삼액(20 °brix) 함량 10~50%, yeast extract 0.5~2.5%의 범위로 중심합성계획법에 의하여 10개의 구간으로 홍삼액의 알코올 발효특성을 살펴보았다. 효모수는 홍삼액 및 yeast extract 농도 모두에 영향을 받고 있었으며, 홍삼액 농도에 더 많은 영향을 받는 것으로 나타났다. 홍삼액 농도가 감소하고, yeast extract 농도가 증가할수록 효모수가 증가하는 것으로 나타났다. 알코올 함량이 가장 높게 나타난 발효조건은 홍삼액 함량 30%, yeast extract 함량 0.50%이었으며, 이때의 최대값은 12.45%로 예측되었다. 당도 및 총당 함량의 경우 각각 1%이내의 유의수준에서 유의성이 인정되었고, 당도의 경우 홍삼액 및 yeast extract 함량 두 조건에 모두 영향을 받는 것으로 나타났으며, 총당 함량의 경우 주로 홍삼액 농도에 영향을 받는 것으로 나타났다. 홍삼액 20°brix의 함량을 10~50%까지 증가하여도 발효액의 알코올 함량이 모두 10% 이상이었으며, 전반적으로 홍삼액 첨가에 따른 발효의 저해는 크게 일어나지 않는 것으로 나타나 홍삼의 유효한 성분을 이용한 기능성 주류 개발 시 홍삼농축액을 효율적으로 활용할 수 있을 것이다. 또한, 앞으로 홍삼액 발효 시의 알코올 성분에 대한 분석, 발효액에 대한 관능적 특성, 유효성분 등에 대한 특성 변화 등을 통한 고품질 홍삼주 제조와 관련하여 추가적인 연구가 필요할 것으로 생각된다. This study focused on alcohol fermentation properties of red ginseng extracts using Saccharomyces cerevisiae JF-Y3. Central composite design was employed to investigate the influence of red ginseng extract content (10~50%, v/v) and yeast extract (0.5~2.5%, w/v) on the properties of alcohol fermentation added with red ginseng extracts. Yeast cell growth was affected both by red ginseng extract content and yeast extract content, and red ginseng extract content had a greater effect on yeast cell number than yeast extract content. Yeast cell number increased along with decrease of the red ginseng extract content and with increase of yeast extract content. Alcohol content was maximal at 30% red ginseng extracts and 0.50% yeast extract and the predicted maximum value of alcohol content was 12.45%. Brix degree and total sugar content were significant within 1% level (p<0.01), and brix degree was affected both by red ginseng extract and yeast extract content. Total sugar content was significantly affected by red ginseng content.

      • SCIESCOPUSKCI등재

        A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models

        Saba, Evelyn,Lee, Yuan Yee,Kim, Min Ki,Kim, Seung-Hyung,Hong, Seung-Bok,Rhee, Man Hee The Korean Society of Ginseng 2018 Journal of Ginseng Research Vol.42 No.4

        Background: Ginseng (Panax ginseng) is a widely used traditional herbal supplement that possesses various health-enhancing efficacies. Various ginseng products are available in market, especially in the Korean peninsula, in the form of drinks, tablets, and capsules. The different ginseng types include the traditional red ginseng extract (RGE), white ginseng, and black red ginseng extract (BRGE). Their fermented and enzyme-treated products are also available. Different treatment regimens alter the bioavailability of certain compounds present in the respective ginseng extracts. Therefore, in this study, we aimed to compare the antioxidant and immune-stimulating activities of RGE, BRGE, and fermented red ginseng extract (FRGE). Methods: We used an acetaminophen-induced oxidative stress model for investigating the reduction of oxidative stress by RGE, BRGE, and FRGE in Sprague Dawley rats. A cyclophosphamide-induced immunosuppression model was used to evaluate the immune-stimulating activities of these ginseng extracts in BALB/c mice. Results: Our results showed that most prominently, RGE (in almost all experiments) exhibited excellent antioxidant effects via increasing superoxide dismutase, catalase, and glutathione peroxidase activities in the liver and decreasing serum 8-hydroxy-2'-deoxyguanosine, aspartate aminotransferase, and lactate dehydrogenase levels compared with the groups treated with FRGE and BRGE. Moreover, RGE significantly increased the number of white blood cells, especially T and B lymphocytes, and antibody-forming cells in the spleen and thymus, and it also activated a number of immune cell subtypes. Conclusion: Taken together, these results indicate that RGE is the best supplement for consumption in everyday life for overall health-enhancing properties.

      • KCI등재

        추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링

        이기동 한국식품저장유통학회 2023 한국식품저장유통학회지 Vol.30 No.5

        In this study, the extraction yield, acidic polysaccharides and ginsenosides of red and black ginseng were optimized by using the response surface methodology in consideration of the ethanol concentration and temperature of the extraction. The R2 of the model formula for the yield, acidic polysaccharides and ginsenosides was 0.8378-0.9679 (p<0.1). An optimal extraction yield of 5.29% was reached for red ginseng soluble solids when 1.52% ethanol concentration was used at a temperature of 67.27℃. Additionally, the optimal extraction yield for black ginseng soluble solid was 6.11% when 3.12% ethanol concentration was used at a temperature of 66.13℃. Furthermore, the optimal conditions for extracting acidic polysaccharides from red ginseng were using an ethanol concentration of 4.03% at a temperature of 69.61℃; a yield of 1.86 mg/mL was obtained. The optimal extraction yield for acidic polysaccharides from black ginseng was 1.80 mg/mL when extracted using a concentration of 24.67% of ethanol at a temperature of 71.14℃. An optimal extraction yield of 0.22 mg/mL was reached for ginsenoside Rg1 from red ginseng when 79.92% ethanol concentration was used at a temperature of 70.62℃. The optimal extraction yield of ginsenoside Rg3 from black ginseng was 0.31 mg/mL when ethanol was used at a concentration of 75.70% at a temperature of 65.49℃. The ideal extraction conditions for obtaining the maximum yield of both acidic polysaccharide and ginsenoside from red and black ginseng were using ethanol at a concentration between 35 and 50% at an extraction temperature of 70℃.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼