RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Resveratrol Up-regulates Cysteine-rich Angiogenic Inducer 61 (CYR61) in Human Colorectal Cancer Cells

        Eun-Hee Kwak(곽은희),Jong-Sik Kim(김종식) 한국생명과학회 2013 생명과학회지 Vol.23 No.2

        파이토케미칼 resveratrol은 항산화, 항염증, 항암등을 포함하는 다양한 생리활성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 resveratrol이 CCN family 중의 하나인 cysteine-rich angiogenic inducer 61 (CYR61) 유전자의 발현을 유도할 수 있는지 연구하였다. 결과에 의하면 resveratrol은 3개의 다른 인간 대장암 세포주에서 CYR61 단백질의 발현을 유도하였을 뿐만 아니라, HCT116세포주에서는 처리한 resveratrol 농도와 시간 의존적으로 CYR61 단백질의 발현을 유도하였다. 이러한 CYR61 단백질의 발현이 resveratrol의 어떤 생리활성과 관련이 있는지 확인하기 위하여 몇 종류의 NSAIDs와 항산화제를 처리하여 CYR61 단백질의 발현을 확인하였으나, 오직 resveratrol의 처리에 의해서만 CYR61 단백질의 발현이 유도되었다. 또한, CYR61의 발현은 암 억제유전자인 p53과는 관련이 없는 것으로 판단되었다. Promoter assay를 통하여 프로모터 -732 ~ +54 사이에 조절부위가 있음을 확인하였고, 파이토케미칼 Indole-3-carbinol이나 6-gingerol에 의해서도 CYR61의 발현이 유도되지 않음을 확인하였다. 이러한 연구결과는 resveratrol에 의한 CYR61 유전자의 발현은 resveratrol특이적이며, 이러한 연구결과는 resveratrol만의 특이한 생리활성을 이해하는데 도움을 줄 것으로 기대된다. In this paper, we investigated whether resveratrol could induce the expression of cysteine-rich angiogenic inducer 61 (CYR61), which is a member of the CCN families. We showed that resveratrol up-regulated CYR61 protein expression in three different human colorectal cancer cell lines. In addition, resveratrol induced CYR61 protein expression in a dose- and time-dependent manner in a HCT116 cell line. To investigate the relationship between various biological activities of resveratrol and CYR61 expression, HCT116 cells were incubated with several NSAIDs, antioxidants, or resveratrol. Interestingly, resveratrol only induced CYR61 protein expression. The expression of CYR61 was not related to the presence of p53. A promoter assay revealed that the 786-bp promoter region (-732/+54) contains a regulatory region and that indole-3-carbinol and 6-gingerol could not induce CYR61 expression. In conclusion, our results indicate up-regulation of CYR61 is extremely resveratrol specific. The results can help to shed light on the unique biological function of resveratrol.

      • KCI등재후보

        쥐의 초기 난포 발달에 관여하는 Cell Size Growth 및 CCN Family 유전자에 관한 연구

        김경화,박창은,윤세진,이경아,Kim, Kyeoung-Hwa,Park, Chang-Eun,Yoon, Se-Jin,Lee, Kyung-Ah 대한생식의학회 2005 Clinical and Experimental Reproductive Medicine Vol.32 No.3

        Objectives: Previously, we sought to compile a list of genes expressed during early folliculogenesis by using cDNA microarray to investigate follicular gene expression and changes during primordialprimary follicle transition and development of secondary follicles (Yoon et al., 2005). Among those genes, a group of genes related to the cell size growth was characterized during the ovarian development in the present study. Methods: We determined ovarian expression pattern of six genes related to the cell size growth (cyr61, emp1, fhl1, socs2, wig1 and wisp1) and extended into CCN family (${\underline{c}}onnective$ tissue growth factor/${\underline{c}}ysteine$-rich 61/${\underline{n}}ephroblastoma$-overexpressed), ctgf, nov, wisp2, wisp3, including cyr61 and wisp1 genes. Expression of mRNA and protein according to the ovarian developmental stage was evaluated by in situ hybridization, and/or semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), and immunohistochemistry, respectively. Results: Among 6 genes related to the cell size growth, cyr61 and wisp1 mRNA was detected only in oocytes in the postnatal day5 mouse ovaries. cyr61 mRNA expression was limited to the nucleolus of oocytes, while wisp1 was expressed in the cytoplasm and nucleolus of oocytes, except nucleus. cyr61 mRNA expression, however, was found in granulosa cells from secondary follicles. The rest 4 genes in the cell size growth group were detected in oocytes, granulosa and theca cells. Cyr61 and Wisp1 proteins were expressed in the oocyte cytoplasm from primordial follicle stage. Especially, Cyr61 protein was detected in pre-granulosa cells, Wisp1 protein was not. By using RT-PCR, we evaluated and decided that Cyr61 protein is produced by their own mRNA in pre-granulosa cells that was not detected by in situ hybridization. cyr61 and wisp1 genes are happen to be the CCN family members. The other members of CCN family were also studied, but their expression was detected in oocytes, granulose and theca cells. Conclusions: We firstly characterized the ovarian expression of genes related to the cell size growth and CCN family according to the early folliculogenesis. Cyr61 protein expression in the pre-granulosa cells is profound in meaning. Further functional analysis for cyr61 in early folliculogenesis is under investigation.

      • KCI등재

        Knockdown of cysteine-rich 61 inhibits proliferation, migration, and invasiveness of prostate carcinoma PC-3 cells

        이윤진,David M. Lee,정동준,심정현,이창호,최영진,남해선,조문균,이상한 한국통합생물학회 2013 Animal cells and systems Vol.17 No.5

        The overexpression of wild-type cysteine-rich 61 (Cyr61) is associated with the aggressiveness of cancer and poor prognosis in different human cancers. The aim of this study was to examine the expression of Cyr61 protein in prostate adenocarcinomas and to investigate the effects of inhibiting Cyr61 expression using small interfering RNA on the proliferation, migration, invasiveness, and sensitivity of prostate carcinoma PC-3 cells to TNF-related apoptosis-inducing ligand. Cell proliferation was measured by XTT assay. Colony formation assay, wound healing assay, and Matrigel invasion assay were also examined. Immunohistochemical staining of prostate tumor tissues showed that prostate carcinomas had significantly increased Cyr61 level compared with benign glands adjacent to carcinoma. siRNA-based knockdown of Cyr61 resulted in decreased cellular proliferation, clonogenicity, migration, and invasion. At the same time, Cyr61 silencing effectively reduced the levels of phosphorylated Akt and integrin-b3. Cyr61-specific siRNA combined with TRAIL increased the apoptosis of PC-3 cells and the cleavage of apoptosis hallmarkers such as PARP and caspase-3. Taken together, our data provide evidence that Cyr61 modulates integrinb 3 level as well as PI3-kinase/Akt activity through which Cyr61 may mediate tumorigenesis, and suggest the potential importance of Cyr61 targeting on enhancing the therapeutic efficacy of prostate cancer.

      • Overexpression of NDRG2 Can Inhibit Neuroblastoma Cell Proliferation through Negative Regulation by CYR61

        Zhang, Zhi-Guo,Li, Gang,Feng, Da-Yun,Zhang, Jian,Zhang, Jing,Qin, Huai-Zhou,Ma, Lian-Ting,Gao, Guo-Dong,Wu, Lin Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.1

        Several recent studies have showed that the n-myc downstream regulated gene 2 (NDRG2) is a new tumor suppressor gene, and that it plays an important role in tumor suppression in several cancers or cancer cell lines. However, few studies focused on its function in neuroblastoma cells. In the present investigation, we demonstrated that NDRG2 overexpression inhibited their proliferation. Using a cDNA microarray, we found that overexpression of NDRG2 inhibited the expression of cysteine-rich protein 61 (CYR61), a proliferation related gene. From our research, CYR61 may partially hinder NDRG2-mediated inhibition of cell proliferation. Overexpression of NDRG2 resulted in accumulation of cells in the G1 phase, which was accompanied by upregulation of p21 and p27 and downregulation of CDK4 and cyclin D1. Taken together, these data indicate that NDRG2 inhibits the proliferation of neuroblastoma cells partially through suppression of CYR61. Our findings offer novel insights into the physiological roles of NDRG2 in neuroblastoma cell proliferation, and NDRG2 may prove to be effective candidate for the treatment of children with neuroblastoma.

      • KCI등재

        Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells

        Nguyen, Linh Thi Thao,Song, Yeon Woo,Cho, Somi Kim Korean Society for Molecular and Cellular Biology 2016 Molecules and cells Vol.39 No.12

        Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing $GSK3{\beta}$-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.

      • A Novel Synthetic Material, BMM, Accelerates Wound Repair by Stimulating Re-Epithelialization and Fibroblast Activation

        Seo, Ga Young,Hyun, Changlim,Koh, Dongsoo,Park, Sanggyu,Lim, Yoongho,Kim, Young Mee,Cho, Moonjae MDPI 2018 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.19 No.4

        <P>Cutaneous wound repair is an intricate process whereby the skin reprograms itself after injury. In the mid-phase of wound repair, the proliferation, migration, and differentiation of cells are the major mechanisms to lead remodeling. We investigated the effect of BMM ((1E,2E)-1,2-bis((6-bromo-2H-chromen-3-yl)methylene)hydrazine), a novel synthetic material, on the migration and viability of keratinocytes or fibroblasts using the in vitro scratch woundhealing, electric cell-substrate imedance sensing (ECIS), invasion, and MTT assays. Cell migration-related factors were analyzed using western blot, and we found that treatment with BMM stimulated the EMT pathway and focal adhesion kinase (FAK)/Src signaling. Differentiation of HaCaT keratinocyte and fibroblast cells was also stimulated by BMM and specifically, NOX2/4 contributed to the activation of fibroblasts for wound healing. Furthermore, BMM treated HaCaT keratinocyte and fibroblast-co-cultured cells increased migration and differentiation. TGF-β and Cyr61 were also secreted to a greater extent than in single cultured cells. In vivo experiments showed that treatment with BMM promotes wound closure by promoting re-epithelialization. In this study, we demonstrated that a novel synthetic material, BMM, is capable of promoting wound healing via the stimulation of re-epithelialization in the epidermis and the activation of fibroblasts in the dermis, in particular, via the acceleration of the interaction between the epidermis and dermis.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼