http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Xinglin Du,Xiaochen Hou,Yiqiao Guo,Dong Jiang 한국섬유공학회 2021 Fibers and polymers Vol.22 No.3
In this study, cellulose acetate (CA)/poly-(γ-glutamic acid) (γ-PGA)/TiO2 fibrous membrane were prepared byelectrospinning. The wettability of the fibrous membrane was studied by using water contact angle measurements. Scanningelectron and thermogravimetric analyses were carried out to determine the microstructure of the fibers and the thermalstability of the membrane. A study was conducted on the corn seedlings grew of the CA/γ-PGA/TiO2 fibrous membranebasedagricultural film in soil at room temperature. Maize plant height, leaf area and SPAD (Soil and plant analyzerdevelopment) were investigated when covered with a CA/γ-PGA fibrous membrane and a CA/γ-PGA/TiO2 fibrousmembrane. In a simultaneous fashion, water absorption and degradation rate were also studied. Our study highlights thepotential use of these fibrous membranes for mulching film applications. The fibrous membrane may also find potentialapplication in food packing materials, facial masks and antimicrobial films of wound dressing.
Dissecting the meteorological and genetic factors affecting rice grain quality in Northeast China
Chen Mojun,Li Zhao,Huang Jie,Yan Yongfeng,Wu Tao,Bian Mingdi,Zhou Jinsong,Wang Yongjun,Lyv Yanjie,Hu Guanghui,Jin Yong-Mei,Huang Kai,Guo Liping,Jiang Wenzhu,Du Xinglin 한국유전학회 2021 Genes & Genomics Vol.43 No.8
Background The Northeast Plain of China, which is an important region for the production of high grain quality rice in China. However, the grain quality of the rice produced varies across this region, even for the same cultivar. Objective In order to explore the meteorological factors that have the greatest infuence on quality and the transcriptional level diferences between diferent cultivars and diferent locations at grain flling stage. Methods We grew eight rice cultivars in three locations in Northeast China during two growing seasons (2017 and 2018). We recorded meteorological conditions, including air temperature, air temperature range, and photosynthetically active radiation (PAR) during the grain-flling stage of each cultivar, and analyzed the grain quality of those eight cultivars. Results Across all eight cultivars, meteorological factors had a stronger efect on eating quality than genotype, while genotype had a stronger efect on milling quality. Of the three environmental factors assessed, PAR was signifcantly correlated with the most grain quality traits. Using RNA-sequencing analysis, we identifed 573 environment-specifc DEGs (Diferentially Expressed Genes), and 119 genotype-specifc DEGs; 11 DEGs were responsive to genotype×environment interactions. These DEGs were involved in many key metabolic processes. Conclusion Our results indicated that interactions among environmental factors, especially PAR, afected rice quality in Northeast China. Further analyses of the DEGs identifed herein may provide useful information for future breeding programs aiming to develop high grain quality rice varieties suitable for cultivation across Northeast China.
Identification and Characterization of EDT1 Conferring Drought Tolerance in Rice
Tao Wu,Mingxing Zhang,Hongjia Zhang,Kai Huang,Mojun Chen,Chen Chen,Xue Yang,Zhao Li,Haoyuan Chen,Zhiming Ma,Xunming Zhang,Wenzhu Jiang,Xinglin Du 한국식물학회 2019 Journal of Plant Biology Vol.62 No.1
Basic Leucine Zipper (bZIP) transcription factors(TFs) play important roles in many processes, especially inabiotic stress response in plants. In this study, we characterizeda new gene EHANCED DROUGHT TOLERANCE 1 (EDT1),member of group E of bZIP transcription factor family inrice. The EDT1 protein contains one bZIP domain, oneputative nuclear localization signal (NLS) and six conservedphosphorylation sites. The expression of EDT1 is suppressedby several abiotic stresses, such as cold, droutht, and salt. Corresponding with expression patterns, several stress-associatedcis-acting elements were found in the EDT1 promoter. Theresults of subcellular localization and transactivation abilityanalyses indicated that EDT1 was localized in the nucleusand functioned as a nuclear protein, with its transactivationactivity primarily located in N-terminal. Transgenic riceoverexpressing EDT1 showed drought tolerance that hasbeen significantly improved. Real-time PCR analysis revealedthat some stress-related genes, such as OsbZIP12, SNAC1,OsLEA3, OsbZIP16, OsbZIP10 and OsABI2 were up-regulatedin EDT1 overexpression lines. These results indicate thatEDT1 plays a positive role in drought tolerance and providesvaluable targets for breeding drought-tolerant rice cultivars.
Wenzhu Jiang,Yong-Mei Jin,이주현,Kang-Ie Lee,Rihua Piao,Longzhi Han,Jin-Chul Shin,Rong-De Jin,Tiehua Cao,Hong-Yu Pan,Xinglin Du,고희종 한국분자세포생물학회 2011 Molecules and cells Vol.32 No.6
Low temperature is one of the major environmental stress-es in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of re-combinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for cold-related traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and envi-ronments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in E-QTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments.
Wenzhu Jiang,이주현,Yong-Mei Jin,Yongli Qiao,Rihua Piao,Sun Mi Jang,우미옥,권순욱,Xianhu Liu,Hong-Yu Pan,Xinglin Du,고희종 한국분자세포생물학회 2011 Molecules and cells Vol.31 No.4
Seed germination capability of rice is one of the impor-tant traits in the production and storage of seeds. Quantitative trait loci (QTL) associated with seed germination capability in various storage periods was identified using two sets of recombinant inbred lines (RILs) which derived from crosses between Milyang 23 and Tong 88-7 (MT-RILs) and between Dasanbyeo and TR22183 (DT-RILs). A total of five and three main additive effects (QTLs) associated with seed germination capability were identified in MT-RILs and DT-RILs, respectively. Among them, six QTLs were identified repeatedly in various seed storage periods designated as qMT-SGC5.1, qMT-SGC7.2, and qMT-SGC9.1 on chro-mosomes 5, 7, and 9 in MT-RILs, and qDT-SGC2.1, qDT-SGC3.1, and qDT-SGC9.1 on chromosomes 2, 3, and 9 in DT-RILs, respectively. The QTL on chromosome 9 was identified in both RIL populations under all three storage periods, explaining up to 40% of the phenotypic variation. Eight and eighteen pairs additive additive epistatic effect (epistatic QTL) were identified in MT-RILs and DT-RILs, respectively. In addition, several near isogenic lines (NILs) were developed to confirm six repeatable QTL effects using controlled deterioration test (CDT). The identified QTLs will be further studied to elucidate the mechanisms controlling seed germination capability, which have important implications for long-term seed storage.