RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl‑1 with yellow–green leaf color

        Tong‑Mei Gao,Shuang‑Ling Wei,Jing Chen,Yin Wu,Feng Li,Li‑Bin Wei,Chun Li,Yan‑Juan Zeng,Yuan Tian,Dong‑Yong Wang,Hai‑Yang Zhang 한국유전학회 2020 Genes & Genomics Vol.42 No.1

        Background Both photosynthetic pigments and chloroplasts in plant leaf cells play an important role in deciding on the photosynthetic capacity and efficiency in plants. Systematical investigating the regulatory mechanism of chloroplast development and chlorophyll (Chl) content variation is necessary for clarifying the photosynthesis mechanism for crops. Objective This study aims to explore the critical regulatory mechanism of leaf color mutation in a yellow–green leaf sesame mutant Siyl-1. Methods We performed the genetic analysis of the yellow-green leaf color mutation using the F2 population of the mutant Siyl-1. We compared the morphological structure of the chloroplasts, chlorophyll content of the three genotypes of the mutant F2 progeny. We performed the two-dimensional gel electrophoresis (2-DE) and compared the protein expression variation between the mutant progeny and the wild type. Results Genetic analysis indicated that there were 3 phenotypes of the F2 population of the mutant Siyl-1, i.e., YY type with light-yellow leaf color (lethal); Yy type with yellow-green leaf color, and yy type with normal green leaf color. The yellowgreen mutation was controlled by an incompletely dominant nuclear gene, Siyl-1. Compared with the wild genotype, the chloroplast number and the morphological structure in YY and Yy mutant lines varied evidently. The chlorophyll content also significantly decreased (P < 0.05). The 2-DE comparison showed that there were 98 differentially expressed proteins (DEPs) among YY, Yy, and yy lines. All the 98 DEPs were classified into 5 functional groups. Of which 82.7% DEPs proteins belonged to the photosynthesis and energy metabolism group. Conclusion The results revealed the genetic character of yellow-green leaf color mutant Siyl-1. 98 DEPs were found in YY and Yy mutant compared with the wild genotype. The regulation pathway related with the yellow leaf trait mutation in sesame was analyzed for the first time. The findings supplied the basic theoretical and gene basis for leaf color and chloroplast development mechanism in sesame.

      • SCIEKCI등재

        Bacterial Community Structure and Function Shift in Rhizosphere Soil of Tobacco Plants Infected by Meloidogyne incognita

        Wenjie Tong(Wenjie Tong),Junying Li(Junying Li),Wenfeng Cong(Wenfeng Cong),Cuiping Zhang(Cuiping Zhang),Zhaoli Xu(Zhaoli Xu),Xiaolong Chen(Xiaolong Chen),Min Yang(Min Yang),Jiani Liu(Jiani Liu),Lei Yu 한국식물병리학회 2022 Plant Pathology Journal Vol.38 No.6

        Root-knot nematode disease is a widespread and catastrophic disease of tobacco. However, little is known about the relationship between rhizosphere bacterial community and root-knot nematode disease. This study used 16S rRNA gene sequencing and PICRUSt to assess bacterial community structure and function changes in rhizosphere soil from Meloidogyne incognita-infected tobacco plants. We studied the rhizosphere bacterial community structure of M. incognita-infected and uninfected tobacco plants through a paired comparison design in two regions of tobacco planting area, Yuxi and Jiuxiang of Yunnan Province, southwest China. According to the findings, M. incognita infection can alter the bacterial population in the soil. Uninfested soil has more operational taxonomic unit numbers and richness than infested soil. Principal Coordinate Analysis revealed clear separations between bacterial communities from infested and uninfested soil, indicating that different infection conditions resulted in significantly different bacterial community structures in soils. Firmicutes was prevalent in infested soil, but Chloroflexi and Acidobacteria were prevalent in uninfested soil. Sphingomonas, Streptomyces, and Bradyrhizobium were the dominant bacteria genera, and their abundance were higher in infested soil. By PICRUSt analysis, some metabolism-related functions and signal transduction functions of the rhizosphere bacterial community in the M. incognita infection-tobacco plants had a higher relative abundance than those uninfected. As a result, rhizosphere soils from tobacco plants infected with M. incognita showed considerable bacterial community structure and function alterations.

      • KCI등재
      • SCIESCOPUSKCI등재

        Metabolomics reveals potential biomarkers in the rumen fluid of dairy cows with different levels of milk production

        Zhang, Hua,Tong, Jinjin,Zhang, Yonghong,Xiong, Benhai,Jiang, Linshu Asian Australasian Association of Animal Productio 2020 Animal Bioscience Vol.33 No.1

        Objective: In the present study, an liquid chromatography/mass spectrometry (LC/MS) metabolomics approach was performed to investigate potential biomarkers of milk production in high- and low-milk-yield dairy cows and to establish correlations among rumen fluid metabolites. Methods: Sixteen lactating dairy cows with similar parity and days in milk were divided into high-yield (HY) and low-yield (LY) groups based on milk yield. On day 21, rumen fluid metabolites were quantified applying LC/MS. Results: The principal component analysis and orthogonal correction partial least squares discriminant analysis showed significantly separated clusters of the ruminal metabolite profiles of HY and LY groups. Compared with HY group, a total of 24 ruminal metabolites were significantly greater in LY group, such as 3-hydroxyanthranilic acid, carboxylic acids, carboxylic acid derivatives (L-isoleucine, L-valine, L-tyrosine, etc.), diazines (uracil, thymine, cytosine), and palmitic acid, while the concentrations of 30 metabolites were dramatically decreased in LY group compared to HY group, included gentisic acid, caprylic acid, and myristic acid. The metabolite enrichment analysis indicated that protein digestion and absorption, ABC transporters and unsaturated fatty acid biosynthesis were significantly different between the two groups. Correlation analysis between the ruminal microbiome and metabolites revealed that certain typical metabolites were exceedingly associated with definite ruminal bacteria; Firmicutes, Actinobacteria, and Synergistetes phyla were highly correlated with most metabolites. Conclusion: These findings revealed that the ruminal metabolite profiles were significantly different between HY and LY groups, and these results may provide novel insights to evaluate biomarkers for a better feed digestion and may reveal the potential mechanism underlying the difference in milk yield in dairy cows.

      • SCIESCOPUSKCI등재

        p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

        Tong Zhang,Jiaxin Zhang,Ruilan Li Asian Australasian Association of Animal Productio 2023 Animal Bioscience Vol.36 No.7

        Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

      • KCI등재

        Differences in the biological properties of mesenchymal stromal cells from traumatic temporomandibular joint fibrous and bony ankylosis: a comparative study

        Zhang Pei-Pei,Liang Su-Xia,Wang Hua-Lun,Yang Kun,Nie Shao-Chen,Zhang Tong-Mei,Tian Yuan-Yuan,Xu Zhao-Yuan,Chen Wei,Yan Ying-Bin 한국통합생물학회 2021 Animal cells and systems Vol.25 No.5

        The aim of this study was to compare the functional characteristics of mesenchymal stromal cells (MSCs) from a sheep model of traumatic temporomandibular joint (TMJ) fibrous and bony ankylosis. A sheep model of bilateral TMJ trauma-induced fibrous ankylosis on one side and bony ankylosis on the contralateral side was used. MSCs from fibrous ankylosed callus (FAMSCs) or bony ankylosed callus (BA-MSCs) at weeks 1, 2, 4, and 8 after surgery were isolated and cultured. MSCs derived from the bone marrow of the mandibular condyle (BM-MSCs) were used as controls. The MSCs from the different sources were characterized morphologically, phenotypically, and functionally. Adherence and trilineage differentiation potential were presented in the ovine MSCs. These cell populations highly positively expressed MSC-associated specific markers, namely CD29, CD44, and CD166, but lacked CD31 and CD45 expressions. The BA-MSCs had higher clonogenic and proliferative potentials than the FA-MSCs. The BA-MSCs also showed higher osteogenic and chondrogenic potentials, but lower adipogenic capacity than the FA-MSCs. In addition, the BA-MSCs demonstrated higher chondrogenic, but lower osteogenic capacity than the BM-MSCs. Our study suggests that inhibition of the osteogenic and chondrogenic differentiations of MSCs might be a promising strategy for preventing bony ankylosis in the future.

      • KCI등재

        Study on the measurement accuracy of circular transmission line model for low-resistance Ohmic contacts on III-V wide band-gap semiconductors

        Tong Liu,Rong Huang,Fangsen Li,Zengli Huang,Jian Zhang,Jianping Liu,Liqun Zhang,Shuming Zhang,An Dingsun,Hui Yang 한국물리학회 2018 Current Applied Physics Vol.18 No.7

        The accuracy and error propagation for determining the low specific contact resistance of Ohmic contacts on IIIV wide band-gap semiconductors based on the circular transmission line model have been analyzed and the validity of this method is discussed in detail. The accuracy is more susceptible to the factors including data fitting method, electrical measurement technique and contact area correction. By using the equations of the original circular transmission line model to extract the fitting parameters, the calculation accuracy is much improved and the inapplicability of the linear least-square fitting is prevented. To further improve the accuracy, a four-probe current-voltage measurement technique was adopted to reduce the parasitic series resistances and the uncertainty bound, especially for the Ohmic contact with low sheet resistance of the semiconductor. Moreover, we have studied the size effect of contact pads of patterns and demonstrated that contact area correction is necessary for the semiconductor with high sheet resistance. A comprehensive error analysis is also performed to fully understand all the impact factors on this advanced method of specific contact resistance measurement, which is benefit for device performance evaluation and failure analysis.

      • KCI등재

        Analysis of Finite Element Mechanism of Axial Compressive Behavior of T-Shaped Stiffened Concrete-Filled Steel Tubular Stub Columns After Uniform Fire Exposure

        Tong Zhang,Xuetao Lyu,Haiqing Liu,Yang Yu,Yang Xu 한국강구조학회 2021 International Journal of Steel Structures Vol.21 No.3

        Based on the reasonable determination of material constitutive relationship and interaction model between concrete and steel tube, a fi nite element model of T-shaped stiff ened concrete-fi lled steel tube (TSCFST) stub column exposed to uniform fi re was established, and model reliability was verifi ed. Through the FE model, the working mechanism of the model in the whole process of loading was analyzed in detail. In the process of axial compression, the load distributions of steel tube and concrete, and the interaction between steel tube and concrete were discussed. This paper analyzed the eff ects of the main factors on residual bearing capacity of TSCFST stub columns, and put forward the calculation formula of the residual bearing capacity of TSCFST stub columns after uniform fi re exposure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼