RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Metabolic effects of diclofenac on the aquatic food chain – 1 H-NMR study of water flea-zebrafish system

        Li Youzhen,Kim Seonghye,Lee Sujin,Kim Suhkmann 한국독성학회 2023 Toxicological Research Vol.39 No.2

        In the environment, aquatic organisms are not only directly exposed to pollutants, but the effects can be exacerbated along the food chain. In this study, we investigated the effect of the food (water flea) on the secondary consumer (zebrafish) with the exposure diclofenac (DCF) Both organisms were exposed to an environmentally relevant concentrations (15 μg/L) of diclofenac for five days, and zebrafish were fed exposed and non-exposed water fleas, respectively. Metabolites of the water fleas were directly analyzed using HRMAS NMR, and for zebrafish, polar metabolite were extracted and analyzed using liquid NMR. Metabolic profiling was performed and statistically significant metabolites which affected by DCF exposure were identified. There were more than 20 metabolites with variable importance (VIP) score greater than 1.0 in comparisons in fish groups, and identified metabolites differed depending on the effect of exposure and the effect of food. Specifically, exposure to DCF significantly increased alanine and decreased NAD + in zebrafish, which means energy demand was increased. Additionally, the effects of exposed food decreased in guanosine, a neuroprotective metabolite, which explained that the neurometabolic pathway was perturbated by the feeding of exposed food. Our results which short-term exposed primary consumers to pollutants indirectly affected the metabolism of secondary consumers suggest that the long-term exposure further study remains to be investigated.

      • KCI등재

        Comparison of metabolic profiling of Daphnia magna between HR-MAS NMR and solution NMR techniques

        김성혜,이수진,이원호,이유진,최주영,이하니,Youzhen Li,하슬빈,김석만 한국자기공명학회 2021 Journal of the Korean Magnetic Resonance Society Vol.25 No.2

        Daphnia magna is used as target organism for environmental metabolomics. The metabolome of D. magna was studied with NMR spectroscopy. Most studies used the extract of D. magna, but the reproducibility cannot be obtained using extracted sample. In this study, lyophilized D. magna samples were analyzed with two different 1H NMR techniques, HR-MAS on intact tissues and solution NMR on extracted tissues. Samples were measured three times using 600 MHz NMR spectrometer. Metabolite extraction required more than twice as many D. magna, but the metabolite intensity was lower in solution NMR. In the spectra of HR-MAS NMR, the lipid signal was observed, but they did not interfere with metabolite profiling. We also confirmed the effect of swelling time on signal intensities of metabolites in HR-MAS NMR, and the results suggest that appropriate swelling should be used in lyophilized D. magna to improve the accuracy of metabolite profiles.

      • KCI등재

        Experimental Study on the Seismic Mechanism of Full-scale Specimens of Superimposed Slab Shear Walls with Innovative Construction Details

        Hongkang Zhao,Yaping Dai,Jun Yang,Youzhen Fang,Chengjie Mi,Lingchen Yang,Guojian Li 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.6

        The seismic performance of precast reinforced concrete structures has long been a source ofconcern that impedes their use in seismic regions and high-rise buildings. To further optimizethe reinforcement configuration and enhance the seismic performance of the superimposedslab shear wall structures, this research proposed a superimposed slab shear wall withinnovative construction details. Five innovative superimposed slab shear walls and one cast-inplaceconcrete shear wall were designed and tested under low cycle lateral load. The effect ofaxial compression was considered during tests and analyses as well. In this paper, the seismicperformance, including failure mode, hysteretic behavior, load-bearing capacity, lateralstiffness degradation, energy dissipation, and seismic ductility was investigated and analyzed. The experimental results showed that five innovative superimposed slab shear walls and onecast-in-place concrete shear wall exhibited a similar failure mode of flexural-shear failure, anda large area of concrete was damaged and crushed at the shear wall corner. However, the areaof crushing concrete in the cast-in-place concrete shear wall was relatively small. And the areaof crushing concrete in the superimposed slab shear walls increased with the axial compressionratio. For the superimposed slab shear walls, the development of concrete cracks decreasedgradually with the enlargement in the axial compression ratio, while the length of the cracksincreased in this respect. The results indicated that innovative superimposed slab shear wallshad a higher strength capacity and lower lateral-resistant stiffness than the cast-in-placeconcrete shear wall. With the enlargement in the axial compression ratio, the peak strengthcapacity of the superimposed slab shear wall increased obviously, while it degraded rapidlyafter the peak load. It is suggested that the contribution of axial compression to the shear resistcapacity of the inclined section should not be considered in practical design. Meanwhile, theductility coefficients of the six specimens were larger than 2.2, which was in accordance withthe seismic requirements. This investigation could provide effective experimental data forfuture structural seismic performance evaluations and applications of precast superimposedslab shear wall structures.

      • KCI등재

        Epitaxial growth of <010>-oriented MoO2 nanorods on m-sapphire

        Jinxin Liu,Jiao Shi,Di Wu,Xiaoming Zheng,Fengming Chen,Junting Xiao,Youzhen Li,Fei Song,Yongli Gao,Han Huang 한국물리학회 2020 Current Applied Physics Vol.20 No.10

        Molybdenum dioxide (MoO2) materials have attracted considerable interests due to their superduper properties and potential applications, relating to the growth directions and exposed surfaces. Here, we reported as the substrate changes from c-to m-sapphire, the growth direction of epitaxial MoO2 nanorods via an atmospheric pressure chemical vapor deposition approach changes along from <001> to <010> of bulk monoclinic MoO2 accompanied by exposing different surfaces. Optical microscopy (OM), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), highresolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) measurements reveal these MoO2 nanorods are epitaxially grown on m-sapphire substrates with the orientation of MoO2 (101)//sapphire (1010) and MoO2 <010> in line with sapphire <0001>. The electrical conductivity significantly depends on the crystallographic direction of MoO2 nanorods. The method to control the growth directions of 1D MoO2 nanorods has potential applications in nanoelectronic devices.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼