RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis

        Fang Jian,Wang Hui,Zhou Yuping,Zhang Hui,Zhou Huiting,Zhang Xiaohong 생화학분자생물학회 2021 Experimental and molecular medicine Vol.53 No.-

        Ulcerative colitis (UC) is a chronic recurrent intestinal inflammatory disease characterized by high incidence and young onset age. Recently, there have been some interesting findings in the pathogenesis of UC. The mucus barrier, which is composed of a mucin complex rich in O-glycosylation, not only provides nutrients and habitat for intestinal microbes but also orchestrates the taming of germs. In turn, the gut microbiota modulates the production and secretion of mucins and stratification of the mucus layers. Active bidirectional communication between the microbiota and its ‘slimy’ partner, the mucus barrier, seems to be a continually performed concerto, maintaining homeostasis of the gut ecological microenvironment. Any abnormalities may induce a disorder in the gut community, thereby causing inflammatory damage. Our review mainly focuses on the complicated communication between the mucus barrier and gut microbiome to explore a promising new avenue for UC therapy.

      • KCI등재

        Theoretical studies on geometrical and electronic structure of electroplex at the NPB/PBD interface in organic light-emitting diodes

        Hao Yuying,Lei Junfeng,Fang Xiaohong,Fan Wenhao,Xu Bingshe 한국물리학회 2010 Current Applied Physics Vol.10 No.3

        The studies on geometrical and electronic structure of electroplex (NPB+PBD-), which is formed by NPB+and PBD-, were carried out by simulation calculation. The calculation results indicate that the (NPB+PBD-) is formed efficiently when the positions of PBD- and NPB+ are appropriate. The (NPB+PBD-)is energetically favored compared to isolated ions NPB+ and PBD-. So the ionic state NPB+ and PBD- at the interface NPB/PBD inside organic light-emitting diode (OLED) tend to form electroplex. The analysis of geometrical structure data of the (NPB+PBD-) suggests that the electron transfer occurs from the PBD-side to the NPB+ side. The lowest unoccupied molecular orbital (LUMO) of (NPB+PBD-) is localized on the PBD- side and the highest occupied molecular orbital (HOMO) of (NPB+PBD-) on the NPB+ side. The energy gap of the (NPB+PBD-) is 1.61 eV, which approximately equals to the energy difference of 1.63 eV between the LUMO of PBD and the HOMO of NPB. The emission of electroplex is theoretically intermolecular optical transition from the LUMO of PBD to the HOMO of NPB. Because of little overlap probability between LUMOs of PBD and NPB at the NPB/PBD interface inside OLED, the exciplex of PBD and NPB is not efficiently produced.

      • SCIESCOPUSKCI등재

        Response of Esophagus to High and Low Temperatures in Patients With Achalasia

        ( Yutang Ren ),( Meiyun Ke ),( Xiucai Fang ),( Liming Zhu ),( Xiaohong Sun ),( Zhifeng Wang ),( Ruifeng Wang ),( Zhao Wei ),( Ping Wen ),( Haiwei Xin ),( Min Chang ) 대한소화기기능성질환·운동학회 2012 Journal of Neurogastroenterology and Motility (JNM Vol.18 No.4

        Background/Aims Achalasia patients would feel exacerbated dysphagia, chest pain and regurgitation when they drink cold beverages or eat cold food. But these symptoms would relieve when they drink hot water. Reasons are unknown. Methods Twelve achalasia patients (mean age, 34 ± 10 years, F:M, 3:9) who never had any invasive therapies were chosen from Peking Union Medical College Hospital. They were asked to fill in the questionnaire on eating habits including food temperature and related symptoms and to receive high-resolution manometry examination. The exam was done in 2 separated days, at swallowing room temperature (25oC) then hot (50oC) water, and at room temperature (25oC) then cold (2oC) water, respectively. Parameters associated with esophageal motility were analyzed. Results Most patients (9/12) reported discomfort when they ate cold food. All patients reported no additional discomfort when they ate hot food. Drinking hot water was effective in 5/8 patients who ever tried to relieve chest pain attacks. On manometry, cold water increased lower esophageal sphincter (LES) resting pressure (P = 0.003), and prolonged the duration of esophageal body contraction (P = 0.002). Hot water decreased LES resting pressure and residue pressure during swallow (P = 0.008 and P = 0.002), increased LES relaxation rate (P = 0.029) and shortened the duration of esophageal body contraction (P = 0.003). Conclusions Cold water could increase LES resting pressure, prolong the contraction duration of esophageal body, and exacerbate achalasia symptoms. Hot water could reduce LES resting pressure, assist LES relaxation, shorten the contraction duration of esophageal body and relieve symptoms. Thus achalasia patients are recommended to eat hot and warm food and avoid cold food. (J Neurogastroenterol Motil 2012,18:391-398)

      • KCI등재

        Simultaneous regulation of photoabsorption and ferromagnetism of NaTaO3 by Fe doping

        Huan Yang,Liguo Zhang,Lifang Yu,Fang Wang,Zhenzhen Ma,Jie Zhou,Xiaohong Xu 한국물리학회 2018 Current Applied Physics Vol.18 No.11

        NaTa1-xFexO3 (0≤x≤0.40) nanocubes were synthesized by a relatively low temperature hydrothermal method, using Ta2O5, FeCl3 and NaOH as the precursors. The UV–vis diffuse reflectance spectra showed that NaTa1-xFexO3 had significant visible-light-absorbing capability, and the absorption edge of NaTaO3 shifted to longer wavelength with the increase of Fe dopants. Moreover, NaTa1-xFexO3 exhibited room-temperature ferromagnetism when Fe3+ occupied Ta5+ sites in NaTaO3 crystal lattice. The ferromagnetism is mainly attributed to the superexchange interactions between doped Fe3+, rather than the contribution of oxygen vacancies caused by Fe doping. Therefore, Fe doping can simultaneously regulate the optical and magnetic properties of NaTaO3 semiconductor, which will enable its potential applications in multifunctional optical-electronics and opticalspintronics devices.

      • SCIESCOPUSKCI등재

        Changes in Enteric Neurons of Small Intestine in a Rat Model of Irritable Bowel Syndrome with Diarrhea

        ( Shan Li ),( Guijun Fei ),( Xiucai Fang ),( Xilin Yang ),( Xiaohong Sun ),( Jiaming Qian ),( Jackie D Wood ),( Meiyun Ke ) 대한소화기기능성질환·운동학회 2016 Journal of Neurogastroenterology and Motility (JNM Vol.22 No.2

        Background/Aims Physical and/or emotional stresses are important factors in the exacerbation of symptoms in irritable bowel syndrome (IBS). Several lines of evidence support that a major impact of stress on the gastrointestinal tract occurs via the enteric nervous system. We aimed to evaluate histological changes in the submucosal plexus (SMP) and myenteric plexus (MP) of the distal ileum in concert with the intestinal motor function in a rat model of IBS with diarrhea. Methods The rat model was induced by heterotypic chronic and acute stress (CAS). The intestinal transit was measured by administering powdered carbon by gastric gavage. Double immunohistochemical fluorescence staining with whole-mount preparations of SMP and MP of enteric nervous system was used to assess changes in expression of choline acetyltransferase, vasoactive intestinal peptide, or nitric oxide synthase in relation to the pan neuronal marker, anti-Hu. Results The intestinal transit ratio increased significantly from control values of 50.8% to 60.6% in the CAS group. The numbers of enteric ganglia and neurons in the SMP were increased in the CAS group. The proportions of choline acetyltransferase- and vasoactive intestinal peptide-immunoreactive neurons in the SMP were increased (82.1 ± 4.3% vs. 76.0 ± 5.0%, P = 0.021; 40.5 ± 5.9% vs 28.9 ± 3.7%, P = 0.001), while nitric oxide synthase-immunoreactive neurons in the MP were decreased compared with controls (23.3 ± 4.5% vs 32.4 ± 4.5%, P = 0.002). Conclusions These morphological changes in enteric neurons to CAS might contribute to the dysfunction in motility and secretion in IBS with diarrhea. (J Neurogastroenterol Motil 2016;22:310-320)

      • KCI등재

        Fractional Order Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Servo System via an Improved Disturbance Observer

        Weijia Zheng,Runquan Huang,Meijin Lin,Fang Guo,YangQuan Chen,Xiaohong Wang 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.4

        A fractional order sliding mode control (FOSMC) method is developed in this paper to deal with the control problem of permanent magnet synchronous motor (PMSM) speed servo system subject to multiple disturbances including model uncertainties, unknown constant disturbances and harmonic disturbances. The lumped exogenous disturbances and uncertainties of the PMSM speed servo are estimated by an improved disturbance observer (DO) and an extended state observer (ESO), respectively. Then, a novel FOSMC law is developed by incorporating the feedforward compensation and a fractional order switching law. The stability of the closed-loop system is established based on Lyapunov stability approach. Under the FOSMC scheme, the tracking performance and robustness of the PMSM servo system are improved simultaneously in the presence of mismatched disturbance torques and measurement noise. The effectiveness and advantages of the proposed method are demonstrated by the PMSM speed regulation experiments and the comparisons with some existing methods.

      • KCI등재

        Comparison of leaf transcriptomes of cassava “Xinxuan 048” diploid and autotetraploid plants

        Ling Yin,Junjie Qu,Huiwen Zhou,Xiaohong Shang,Hui Fang,Jiang Lu,Huabing Yan 한국유전학회 2018 Genes & Genomics Vol.40 No.9

        Polyploidy breeding of cassava has been used to improve cassava traits over the past years. We previously reported in vitro induction of tetraploids in the cassava variety “Xinxuan 048” using colchicine. Significant differences in morphology and anatomy were found between the diploid and tetraploid plants. However, very little is known about the transcriptome difference between them. In this study, morphological and physiological characteristics including leaf thickness, plant height, internode length, chlorophyll content, and photosynthetic capacity were measured. Further, we investigated and validated the difference in gene expression patterns between cassava “Xinxuan 048” tetraploid genotype and its diploid plants using RNA sequencing (RNAseq) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Significant differences in morphology and physiology were observed during tetraploidization. A comparison revealed that tetraploidy induced very limited changes in the leaf transcriptomes of cassava “Xinxuan 048” diploid and autotetraploid plants. However, the differentially expressed genes (DEGs) between 2× and 4× plants, especially those upregulated in 4× plants, were strongly associated with hormonal and stress responses. Large changes in morphology and physiology between the diploid cassava “Xinxuan 048” and its autotetraploid were not associated with large changes in their leaf transcriptomes. Moreover, the differently expressed genes related to the regulation of gibberellin and brassinosteroids potentially explained why the plant height and internode length of 4× plants became shorter. Collectively, our results suggest that 4× cassava is potentially valuable for breeding strains with improved stress resistance.

      • KCI등재

        Regional Brain Activity During Rest and Gastric Water Load in Subtypes of Functional Dyspepsia: A Preliminary Brain Functional Magnetic Resonance Imaging Study

        Yanwen Chen,Ruifeng Wang,Bo Hou,Feng Feng,Xiucai Fang,Liming Zhu,Xiaohong Sun,Zhifeng Wang,Meiyun Ke 대한소화기 기능성질환∙운동학회 2018 Journal of Neurogastroenterology and Motility (JNM Vol.24 No.2

        Background/Aims Functional dyspepsia (FD) remains a great clinical challenge since the FD subtypes, defined by Rome III classification, still have heterogeneous pathogenesis. Previous studies have shown notable differences in visceral sensation processing in the CNS in FD compared to healthy subjects (HS). However, the role of CNS in the pathogenesis of each FD subtype has not been recognized. Methods Twenty-eight FD patients, including 10 epigastric pain syndrome (EPS), 9 postprandial distress syndrome (PDS), and 9 mixed-type, and 10 HS, were enrolled. All subjects underwent a proximal gastric perfusion water load test and the regional brain activities during resting state and water load test were investigated by functional magnetic resonance imaging. Results For regional brain activities during the resting state and water load test, each FD subtype was significantly different from HS (P < 0.05). Focusing on EPS and PDS, the regional brain activities of EPS were stronger than PDS in the left paracentral lobule, right inferior frontal gyrus pars opercularis, postcentral gyrus, precuneus, insula, parahippocampal gyrus, caudate nucleus, and bilateral cingulate cortices at the resting state (P < 0.05), and stronger than PDS in the left inferior temporal and fusiform gyri during the water load test (P < 0.05). Conclusions Compared to HS, FD subtypes had different regional brain activities at rest and during water load test, whereby the differences displayed distinct manifestations for each subtype. Compared to PDS, EPS presented more significant differences from HS at rest, suggesting that the abnormality of central visceral pain processing could be one of the main pathogenesis mechanisms for EPS.

      • SCIESCOPUSKCI등재

        Involvement of Orai1 in tunicamycin-induced endothelial dysfunction

        Yang, Hui,Xue, Yumei,Kuang, Sujuan,Zhang, Mengzhen,Chen, Jinghui,Liu, Lin,Shan, Zhixin,Lin, Qiuxiong,Li, Xiaohong,Yang, Min,Zhou, Hui,Rao, Fang,Deng, Chunyu The Korean Society of Pharmacology 2019 The Korean Journal of Physiology & Pharmacology Vol.23 No.2

        Endoplasmic reticulum (ER) stress is mediated by disturbance of $Ca^{2+}$ homeostasis. The store-operated calcium (SOC) channel is the primary $Ca^{2+}$ channel in non-excitable cells, but its participation in agent-induced ER stress is not clear. In this study, the effects of tunicamycin on $Ca^{2+}$ influx in human umbilical vein endothelial cells (HUVECs) were observed with the fluorescent probe Fluo-4 AM. The effect of tunicamycin on the expression of the unfolded protein response (UPR)-related proteins BiP and CHOP was assayed by western blotting with or without inhibition of Orai1. Tunicamycin induced endothelial dysfunction by activating ER stress. Orai1 expression and the influx of extracellular $Ca^{2+}$ in HUVECs were both upregulated during ER stress. The SOC channel inhibitor SKF96365 reversed tunicamycin-induced endothelial cell dysfunction by inhibiting ER stress. Regulation of tunicamycin-induced ER stress by Orai1 indicates that modification of Orai1 activity may have therapeutic value for conditions with ER stress-induced endothelial dysfunction.

      • KCI등재

        Involvement of Orai1 in tunicamycin-induced endothelial dysfunction

        Hui Yang,Yumei Xue,Sujuan Kuang,Mengzhen Zhang,Jinghui Chen,Lin Liu,Zhixin Shan,Qiuxiong Lin,Xiaohong Li,Min Yang,Hui Zhou,Fang Rao,Chunyu Deng 대한약리학회 2019 The Korean Journal of Physiology & Pharmacology Vol.23 No.2

        Endoplasmic reticulum (ER) stress is mediated by disturbance of Ca2+ homeostasis. The store-operated calcium (SOC) channel is the primary Ca2+ channel in non-excitable cells, but its participation in agent-induced ER stress is not clear. In this study, the effects of tunicamycin on Ca2+ influx in human umbilical vein endothelial cells (HUVECs) were observed with the fluorescent probe Fluo-4 AM. The effect of tunicamycin on the expression of the unfolded protein response (UPR)-related proteins BiP and CHOP was assayed by western blotting with or without inhibition of Orai1. Tunicamycin induced endothelial dysfunction by activating ER stress. Orai1 expression and the influx of extracellular Ca2+ in HUVECs were both upregulated during ER stress. The SOC channel inhibitor SKF96365 reversed tunicamycin-induced endothelial cell dysfunction by inhibiting ER stress. Regulation of tunicamycin-induced ER stress by Orai1 indicates that modification of Orai1 activity may have therapeutic value for conditions with ER stress-induced endothelial dysfunction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼