RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Efficiently targeted therapy of glioblastoma xenograft via multifunctional biomimetic nanodrugs

        Zhipeng Yao,Xiaochun Jiang,Hong Yao,Yafeng Wu,Fan Zhang,Cheng Wang,Chenxue Qi,Chenhui Zhao,Zeyu Wu,Min Qi,Jia Zhang,Xiaoxiang Cao,Zhichun Wang,Fei Wu,Chengyun Yao,Songqin Liu,Shizhang Ling,Hongping Xi 한국생체재료학회 2022 생체재료학회지 Vol.26 No.4

        Background: Glioblastoma multiforme (GBM) is a fatal malignant primary brain tumor in adults. The therapeutic efficacy of chemotherapeutic drugs is limited due to the blood-brain barrier (BBB), poor drug targeting, and short biological half-lives. Multifunctional biomimetic nanodrugs have great potential to overcome these limitations of chemotherapeutic drugs. Methods: We synthesized and characterized a biomimetic nanodrug CMS/PEG-DOX-M. The CMS/PEG-DOX-M effectively and rapidly released DOX in U87 MG cells. Cell proliferation and apoptosis assays were examined by the MTT and TUNEL assays. The penetration of nanodrugs through the BBB and anti-tumor efficacy were investigated in the orthotopic glioblastoma xenograft models. Results: We showed that CMS/PEG-DOX-M inhibited cell proliferation of U87 MG cells and effectively induced cell apoptosis of U87 MG cells. Intracranial antitumor experiments showed that free DOX hardly penetrated the BBB, but CMS/PEG-DOX-M effectively reached the orthotopic ntracranial tumor through the BBB and significantly inhibited tumor growth. Immunofluorescence staining of orthotopic tumor tissue sections confirmed that nanodrugs promoted apoptosis of tumor cells. This study developed a multimodal nanodrug treatment system with the enhanced abilities of tumor-targeting, BBB penetration, and cancer-specific accumulation of chemotherapeutic drugs by combining chemotherapy and photothermal therapy. It can be used as a flexible and effective GBM treatment system and it may also be used for the treatment of other central nervous systems (CNS) tumors and extracranial tumors.

      • KCI등재

        Flow ripple analysis and structural parametric design of a piston pump

        Xiaofeng Wu,Chihkeng Chen,Chihwei Hong,Yafeng He 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.9

        The ripple in the outlet flow from a high-pressure piston pump is caused by pressure pulses in the piston cavity when it rotates through the transition region of the valve plate. We propose a parametric design that optimizes the transition region structure of a piston pump valve plate to reduce the ripple in the outlet flow. For a high- pressure piston pump, a theoretical model of the piston cavity is developed that includes fluid compression properties and leakages. The piston pump parametric model is built using AMESIM software and a simulation is conducted. The results show that the ripple in the outlet flow is affected by the outlet pressure and the pump’s speed and by the structure of the pre-compression region of the valve plate. To minimize the ripple in the outlet flow from the piston pump, the structural parameters in the pre-compression region are optimized as the design variables using the software, ISIGHT, which integrates the piston pump parametric model in AMESIM. After optimization, the ripple in the outlet flow rate is, respectively, reduced by 37.05 %, 38.54 % and 41.04 % for outlet pressures of 200 bar, 300 bar and 400 bar. Finally, a flow ripple test experiment is performed to verify the simulation results.

      • KCI등재
      • Denoising magnetic resonance images using collaborative non-local means

        Chen, Geng,Zhang, Pei,Wu, Yafeng,Shen, Dinggang,Yap, Pew-Thian Elsevier 2016 Neurocomputing Vol.177 No.-

        <P><B>Abstract</B></P> <P>Noise artifacts in magnetic resonance (MR) images increase the complexity of image processing workflows and decrease the reliability of inferences drawn from the images. It is thus often desirable to remove such artifacts beforehand for more robust and effective quantitative analysis. It is important to preserve the integrity of relevant image information while removing noise in MR images. A variety of approaches have been developed for this purpose, and the non-local means (NLM) filter has been shown to be able to achieve state-of-the-art denoising performance. For effective denoising, NLM relies heavily on the existence of repeating structural patterns, which however might not always be present within a single image. This is especially true when one considers the fact that the human brain is complex and contains a lot of unique structures. In this paper we propose to leverage the repeating structures from <I>multiple</I> images to <I>collaboratively</I> denoise an image. The underlying assumption is that it is more likely to find repeating structures from multiple scans than from a single scan. Specifically, to denoise a target image, multiple images, which may be acquired from different subjects, are spatially aligned to the target image, and an NLM-like block matching is performed on these aligned images with the target image as the reference. This will significantly increase the number of matching structures and thus boost the denoising performance. Experiments on both synthetic and real data show that the proposed approach, collaborative non-local means (CNLM), outperforms the classic NLM and yields results with markedly improved structural details.</P>

      • Maximizing the Throughput of Wi-Fi Mesh Networks with Distributed Link Activation

        YANG, Jae-Young,WU, Ledan,ZHOU, Yafeng,KWON, Joonho,JEONG, Han-You 'Institute of Electronics, Information and Communi 2017 IEICE transactions on fundamentals of electronics, Vol.ea100 No.11

        <P>In this paper, we study Wi-Fi mesh networks (WMNs) as a promising candidate for wireless networking infrastructure that interconnects a variety of access networks. The main performance bottleneck of a WMN is their limited capacity due to the packet collision from the contention-based IEEE 802.11s MAC. To mitigate this problem, we present the distributed link-activation (DLA) protocol which activates a set of collision-free links for a fixed amount of time by exchanging a few control packets between neighboring MRs. Through the rigorous proof, it is shown that the upper bound of the DLA rounds is O (S-max), where S-max is the maximum number of (simultaneous) interference-free links in a WMN topology. Based on the DLA, we also design the distributed throughput-maximal scheduling (D-TMS) scheme which overlays the DLA protocol on a new frame architecture based on the IEEE 802.11 power saving mode. To mitigate its high latency, we propose the D-TMS adaptive data-period control (D-TMS-ADPC) that adjusts the data period depending on the traffic load of a WMN. Numerical results show that the D-TMS-ADPC scheme achieves much higher throughput performance than the IEEE 802.11s MAC.</P>

      • KCI등재

        Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments

        Jiping Ma,Shuang Li,Gege Wu,Maryam Arabi,Feng Tan,Yafeng Guan,Jinhua Li,Lingxin Chen 한국공업화학회 2020 Journal of Industrial and Engineering Chemistry Vol.90 No.-

        A novel kind of Zr-based magnetic metal-organic frameworks (MMOFs) was prepared by immobilizationof UiO-66 onto Fe3O4@SiO2 particles via an efficient one-pot solvothermal method. Subsequently, it wasused for adsorptive removal of triclosan (TCS) and triclocarban (TCC) fungicides from aqueousenvironments by magnetic solid phase separation. Morphology and physical/chemical features of theMMOFs were fully characterized by XRD, SEM, TEM, FT-IR, and VSM etc., showing high specific surfacearea, appropriate functionality, and desirable magnetic property. Several main factors affecting theadsorption performances of TCS and TCC on the MMOFs were systematically investigated and optimized,such as pH value of water sample, amounts/types of adsorbent and salinity. Under the optimizedconditions, short adsorption equilibrium time (only 25 min) and outstanding saturated adsorptioncapacities (476.27 and 602.40 mg g 1 for TCS and TCC, respectively) were the remarkable superiorities ofthe MMOFs compared with that of most reported adsorbents. The MMOFs demonstrated excellentadsorption selectivity for TCS and TCC and anti-interference ability. Also, the reusability for at least 11cycles was another major profit of the MMOFs that saved cost and prevented waste. Moreover, theMMOFs demonstrated satisfactory removal/purification ability for actual environmental water samples. These benefits propounded a promising outlook of employing the MMOFs for influential removal ofpollutants with considerable reliability in thefield of wastewater treatment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼