RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Callus induction and plant regeneration from leaves of peony

        Xiangtao Zhu,Xueqin Li,Wenjie Ding,Songheng Jin,Yan Wang 한국원예학회 2018 Horticulture, Environment, and Biotechnology Vol.59 No.4

        Tree peony (Paeonia suffruticosa Andr.) is a valued ornamental plant. This study reports on peony callus induction, shoot organogenesis and plant regeneration using young peony leaves as explants. Various media containing diverse plant growth regulators were assessed for their potency in peony propagation. After exposure of dark-adapted leaf discs to 30 μmol m−2 s−1 of light, inoculation in Murashige and Skoog (MS) + 0.2 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) + 0.2 mg L−1 a-naphthaleneacetic acid (NAA) + 3.0 mg L−1 thidiazuron (TDZ) medium resulted to the highest callus induction rate with values reaching up to 87.8%. We identified that MS + 0.2 mg L−1 NAA + 2.0 mg L−1 6-benzyladenine (6-BA) + 2.0 mg L−1 kinetin (KT), with a multiplication coefficient of 3.025, to be the optimal medium for further callus proliferation under light. Inoculation in MS + 2.0 mg L−16-BA + 0.2 mg L−1 NAA + 0.3 mg L−1 TDZ medium allowed 22.22% of callus cultures to differentiate into adventitious shoots, whereas a similar rate of root formation was detected when 1/2 MS + 0.1 mg L−1 NAA + 0.05 mg L−1 IBA + 30 g L−1 sucrose medium was used. Our findings provide important information on peony regeneration and present a new method for peony tissue culture that will potentially facilitate mass propagation and genetic engineering of peony plants.

      • SCIESCOPUS

        Pathogen-Imprinted Polymer Film Integrated probe/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXenes Electrochemical Sensor for Highly Sensitive Determination of Listeria Monocytogenes

        Xiaohua, Jiang,Zhiwen, Lv,Wenjie, Ding,Ying, Zhang,Feng, Lin The Korean Electrochemical Society 2022 Journal of electrochemical science and technology Vol.13 No.4

        As one of the most hazardous and deadliest pathogens, Listeria monocytogenes (LM) posed various serious diseases to the human being, thus designing effective strategy for its detection is of great significance. In this work, by preparing Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXenes nanoribbon (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>R) as carrier and selecting thionine (Th) acted simultaneously as signal probe and functional monomer, a LM pathogen-imprinted polymers (PIP) integrated probe electrochemical sensor was design to monitor LM for the first time, that was carried out through the electropolymerization of Th on the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>R/GCE surface in the existence of LM. Upon eluting the templates from the LM imprinted cavities, the fabricated PIP/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>R/GCE sensor can rebound LM cells effectively. By recording the peak current of Th as the response signal, it can be weakened when LM cell was re-bound to the LM imprinted cavity on PIP/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>R/GCE, and the absolute values of peak current change increase with the increasement of LM concentrations. After optimizing three key parameters, a considerable low analytical limit (2 CFU mL<sup>-1</sup>) and wide linearity (10-10<sup>8</sup> CFU mL<sup>-1</sup>) for LM were achieved. In addition, the experiments demonstrated that the PIP/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>R sensor offers satisfactory selectivity, reproducibility and stability.

      • KCI등재

        Incipient fault diagnosis for centrifugal chillers using kernel entropy component analysis and voting based extreme learning machine

        Yudong Xia,Qiang Ding,Aipeng Jiang,Nijie Jing,Wenjie Zhou,Jian Wang 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.3

        Incipient fault detection and diagnosis for centrifugal chillers is significant for maintaining safe and effective system operation. Due to the advantages of simple learning algorithm and high generalization capability, the extreme learning machine (ELM) can identify faults quickly and precisely in comparison to conventional classification methods such as back propagation neural network (BPNN). This paper reports an effective diagnosis method for incipient chiller faults with the integration of kernel entropy component analysis (KECA) and voting based ELM (VELM). KECA was first performed to reduce the dimensionality of the original input data so as to minimize the model complexity and computational cost. Instead of using a single ELM, multiple independent ELMs were adopted in VELM, and then the class label could be predicted based on the majority voting method. Using the experimental data of seven typical faults together with a normal operation, the proposed KECA-VELM fault diagnostic model was trained and further validated. The results show that a better fault diagnosis performance can be achieved using the KECA-VELM classifier compared with the conventional BPNN, ELM and VELM based classifiers. The overall average fault diagnosis accuracy for the faults at the least severity level was reported over 95% based on the proposed method.

      • KCI등재

        Improvement of Anti-CD36 Antibody Detection via Monoclonal Antibody Immobilization of Platelet Antigens Assay by Using Selected Monoclonal Antibodies

        Xu Xiuzhang,Chen Dawei,Ye Xin,Xia Wenjie,Shao Yuan,Deng Jing,Chen Yangkai,Ding Haoqiang,Liu Jing,Xu Yaori,Santoso Sentot,Fu Yongshui 대한진단검사의학회 2023 Annals of Laboratory Medicine Vol.43 No.1

        Antibodies against human CD36 are responsible for several immune-mediated disorders. The detection of anti-CD36 antibodies using the standard monoclonal antibody (mAb) immobilization of platelet antigens (MAIPA) assay is hampered by a high frequency of false-negative results, most likely due to competitive inhibition of the mAb used as the capture antibody. We generated a panel of mouse mAbs against CD36 and seven hybridomas (GZ-3, GZ-13, GZ-70, GZ-143, GZ-413, GZ-507, and GZ-608), which were selected for MAIPA assays, as they reacted with mouse and human CD36. Fourteen anti-CD36 sera were assayed; all of which showed a positive reaction in a PakPlus (Immucor GTI Diagnostics, Inc., Waukesha, WI, USA) ELISA-based screening (optical density: 0.257–2.292). When the reference anti-CD36 mAb FA6-152 was used in the MAIPA assay, only 6/14 (42.9%) sera displayed a positive reaction. In contrast, anti-CD36 antibodies were detected in 13/14 (92.9%) sera when GZ-70 and GZ-608 mAbs were used. This significant improvement resulted in the identification of anti-CD36 antibodies by an antigen capture assay. Since patient’s platelets possibly carrying rare native antigens are used, this method will facilitate the identification of new platelet antibodies against CD36 that are involved in immune-mediated thrombocytopenia and other diseases, such as transfusion-related acute lung injury.

      • KCI등재

        Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

        Jingyu Zhang,Jiacheng Zhu,Shurong Ding,Liang Chen,Wenjie Li,Hua Pang 한국원자력학회 2018 Nuclear Engineering and Technology Vol.50 No.7

        Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demandingenvironment of nuclear reactors. The threshold stress intensity factor, KIH, and critical hydride length, lC ,are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubesundergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tipand thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip isproposed according to the fracture mechanics theory of second-order estimate of plastic zone size. Thedeveloped models with fewer fitting parameters are validated with the experimental results for KIH andlC. The research results for radial cracking cases indicate that a better agreement for KIH can be achieved;the negative axial thermal stresses can lessen KIH and enlarge the critical hydride length, so its effectshould be considered in the safety evaluation and constraint design for fuel rods; the critical hydridelength lC changes slightly in a certain range of stress intensity factors, which interprets the phenomenonthat the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis ofmodel parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease inthe critical hydride length lC , and KIH will firstly decrease and then have a trend to increase with the yieldstrength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values ofthreshold stress intensity factor and critical hydride length at higher temperatures, which might be themain mechanism of crack arrest for some Zircaloy materials

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼