RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Value of Ultrasound Elastography in Assessment of Enlarged Cervical Lymph Nodes

        Teng, Deng-Ke,Wang, Hui,Lin, Yuan-Qiang,Sui, Guo-Qing,Guo, Feng,Sun, Li-Na Asian Pacific Journal of Cancer Prevention 2012 Asian Pacific journal of cancer prevention Vol.13 No.5

        Background: To investigate the value of ultrasound elastography (UE) in the differentiation between benign and malignant enlarged cervical lymph nodes (LNs). Methods: B-mode ultrasound, power Doppler imaging and UE were examined to determine LN characteristics. Two kinds of methods, 4 scores of elastographic classification and a strain ratio (SR) were used to evaluate the ultrasound elastograms. Results: The cutoff point of SR had high utility in differential diagnosis of benign and malignant of cervical lymph nodes, with good sensitivity, specificity and accuracy. Conclusion: UE is an important aid in differential diagnosis of benign and malignant cervical LNs.

      • KCI등재

        Conductivity relaxation in NiTiO3 at high temperatures

        Teng Li,Chun Chang Wang,Chang Mei Lei,Xiao Hong Sun,Guo Jing Wang,Liu Na Liu 한국물리학회 2013 Current Applied Physics Vol.13 No.8

        NiTiO3 ceramics were prepared via the traditional solid-state reaction route. The dielectric properties of NiTiO3 ceramics have been systematically investigated in the temperature range from room temperature to 1073 K NiTiO3 ceramics exhibit intrinsic dielectric response in the temperature range below 400 K. Two relaxations were observed in the temperature range higher than 400 K. The relaxation activation energy is 0.95 eV and 1.17 eV for the low- and high-temperature relaxations, respectively. Our results strongly indicate that the two relaxations are related to conductivity relaxation associated with the singly and doubly ionized oxygen vacancies.

      • KCI등재

        Evaluation of Electrospinnability of Celluloses Derived from Different Biomass Resources

        Yanhua Chen,Na Teng,Haizhen Chen,Jing Chen,Fei Liu,Haining Na,Jin Zhu 한국섬유공학회 2018 Fibers and polymers Vol.19 No.5

        Electrospinnability as well as dissolvability of the celluloses derived from different biomass resources are systematically studied in this work. By analyzing the essentially physical and molecular structure of cellulose in detail, dissolving efficiency and molecular chain entanglement in solution of cellulose are carefully realized. Accordingly, the original factors on electrospinnability of cellulose is revealed. Crystallinity mainly affects the dissolution of cellulose, which is the foundation to achieve electrospinning. Degree of polymerization is the decisive index of cellulose to form molecular entanglement in solution or not. Proper molecular entanglement of cellulose, just as corn cellulose II, could initiate the formation of ultrafine fiber with good morphology in electrospinning. Our research is no doubt helpful to establish a solid scientific and technical foundation for selection of cellulose to achieve high efficiency fabrication of ultrafine fiber in electrospinning.

      • SCIESCOPUSKCI등재

        Bio-based Epoxy Thermoset Containing Stilbene Structure with Ultrahigh T<SUB>g</SUB> and Excellent Flame Retardancy

        Guangming Lu,Xuezhen Wang,Na Teng,Jingyuan Hu,Liyue Zhang,Jinyue Dai,Yongjia Xu,Sakil Mahmud,Xiaoqing Liu 한국고분자학회 2021 폴리머 Vol.45 No.4

        Bio-based epoxy resins with an ultrahigh glass transition temperature (Tg) and excellent flame retardancy are critical for developing sustainable polymers. Herein, a novel trifunctional epoxy monomer triglycidyl ether of resveratrol (TGER) was synthesized from renewable resveratrol. The chemical structure of TGER was confirmed by Fourier transform infrared (FTIR), ¹H, and <SUP>13</SUP>C nuclear magnetic resonance (NMR) spectroscopy which was then reacted with 4,4’-diaminodiphenylmethane (DDM) to form resin. The obtained resin was evaluated in terms of flame retardance and thermal properties. The resultant TGER-DDM 240 resin shows excellent flame-retardant properties, presenting a residual char of 42.5% at 800 ℃, limiting oxygen index (LOI) of 31.2%, and flammability rating of V-0 in UL94 test. Moreover, the resin possesses an ultrahigh Tg at 294 ℃. This work provides a facile method for preparing high-performance flame-retardant epoxy resin from a renewable resource.

      • KCI등재

        Global Adaptive Tracking Control of Robot Manipulators Using Neural Networks with Finite-time Learning Convergence

        Chenguang Yang,Tao Teng,Bin Xu,Zhijun Li,Jing Na,Chun-Yi Su 제어·로봇·시스템학회 2017 International Journal of Control, Automation, and Vol.15 No.4

        In this paper, the global adaptive neural control with finite-time (FT) convergence learning performance for a general class of nonlinear robot manipulators has been investigated. The scheme proposed in this paper offers a subtle blend of neural controller with robust controller, which palliates the limitation of neural approximation region to ensure globally uniformly ultimately bounded (GUUB) stability by integrating a switching mechanism. Moreover, the proposed scheme guarantees the estimated neural weights converging to optimal values in finite time by embedding an adaptive learning algorithm driven by the estimated weights error. The optimal weights obtained through the learning process of the neural networks (NNs) will be reused next time for repeated tasks, and can thus reduce computational load, improve transient performance and enhance robustness. The simulation studies have been carried out to demonstrate the superior performance of the controller in comparison to the conventional methods.

      • p38 MAPK Signaling Mediates Mitochondrial Apoptosis in Cancer Cells Induced by Oleanolic Acid

        Liu, Jia,Wu, Ning,Ma, Lei-Na,Zhong, Jia-Teng,Liu, Ge,Zheng, Lan-Hong,Lin, Xiu-Kun Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.11

        Oleanolic acid (OA) is a nutritional component widely distributed in various vegetables. Although it has been well recognized for decades that OA exerts certain anti-tumor activity by inducing mitochondria-dependent apoptosis, it is still unclear that what molecular signaling is responsible for this effect. In this study, we employed cancer cell lines, A549, BXPC-3, PANC-1 and U2OS to elucidate the molecular mechanisms underlying OA anti-tumor activity. We found that activation of MAPK pathways, including p-38 MAPK, JNK and ERK, was triggered by OA in both a dose and time-dependent fashion in all the tested cancer cells. Activation was accompanied by cleavage of caspases and PARP as well as cytochrome C release. SB203580 (p38 MAPK inhibitor), but not SP600125 (JNK inhibitor) and U0126 (ERK inhibitor), rescued the pro-apoptotic effect of OA on A549 and BXPC-3 cells. OA induced p38 MAPK activation promoted mitochondrial translocation of Bax and Bim, and inhibited Bcl-2 function by enhancing their phosphorylation. OA can induce reactive oxygen species (ROS)-dependent ASK1 activation, and this event was indispensable for p38 MAPK-dependent apoptosis in cancer cells. In vivo, p38 MAPK knockdown A549 tumors proved resistant to the growth-inhibitory effect of OA. Collectively, we elucidated that activation of ROS/ASK1/p38 MAPK pathways is responsible for the apoptosis stimulated by OA in cancer cells. Our finding can contribute to a better understanding of molecular mechanisms underlying the antitumor activity of nutritional components.

      • KCI등재

        ONE-POT SYNTHESIS OF INTERESTING 3D γ-MnOOH NETWORKS

        HAIQIU LIU,MINDONG CHEN,FEI TENG,YUJIAN JIN,Na Li,Lili Wang,SUNQI LOU,XIA HUA,KAI WANG,Peng Sun 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2014 NANO Vol.9 No.7

        Three-dimensional (3D) γ-MnOOH networks are successfully prepared by one-pot solvothermalmethod without using any catalyst. The samples are characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM) and high-resolution transmission electron microscopy(HRTEM). It is found that the amounts of urea and H2O2 added, reaction temperature and timehave important infuences on the samples. It is interesting that the 3D networks are formed fromthe oriented attachment (OA) of Mn3O4 octahedrons; and that the phase transformation from Mn3O4 to γ-MnOOH occurs via the protonation of Mn3O4. This study is expected to offer a facileapproach to the syntheses of new, intricate nanostructures.

      • Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite

        Lin, Jia,Chen, Hong,Gao, Yang,Cai, Yao,Jin, Jianbo,Etman, Ahmed S.,Kang, Joohoon,Lei, Teng,Lin, Zhenni,Folgueras, Maria C.,Quan, Li Na,Kong, Qiao,Sherburne, Matthew,Asta, Mark,Sun, Junliang,Toney, Mic National Academy of Sciences 2019 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.116 No.47

        <P><B>Significance</B></P><P>Metal halide perovskites attract great interest for a wide range of applications due to their remarkable optoelectronic properties. The development of environmentally friendly halide perovskite materials with various crystal structures and compositions offers unprecedented opportunities to achieve desired properties and applications. In this work, we demonstrated an In-based, charge-ordered all-inorganic halide double perovskite with the composition of Cs<SUB>2</SUB>In(I)In(III)Cl<SUB>6</SUB> synthesized by solid-state reaction. High-pressure optical properties were studied, and a pressure-driven, fully reversible semiconductor–metal phase transition was discovered. This In-based charge-ordered structure may inspire new understanding of halide perovskite as well as provide a platform for future discovery of exotic electronic phenomena such as high-<I>T</I><SUB>C</SUB> superconductivity in halide perovskite compounds.</P><P>Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In<SUP>+</SUP>/In<SUP>3+</SUP>) inorganic halide perovskite with the composition of Cs<SUB>2</SUB>In(I)In(III)Cl<SUB>6</SUB> in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group <I>I</I>4/<I>m</I> with <I>a</I> = 17.2604(12) Å, <I>c</I> = 11.0113(16) Å if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼