RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Translocation and Phosphorylation of Calcyclin Binding Protein during Retinoic Acid-induced Neuronal Differentiation of Neuroblastoma SH-SY5Y Cells

        ( Jing Wu ),( Xin Yu Tan ),( Xiao Zhong Peng ),( Jian Gang Yuan ),( Bo Qin Qiang ) 생화학분자생물학회 2003 BMB Reports Vol.36 No.4

        For better understanding of functions of the Calcyclin Binding Protein (CacyBP) and exploring its possible roles in neuronal differentiation, the subcellular localization of human CacyBP was examined in retinoic acid(RA)-induced and uninduced neuroblastoma SH-SY5Y cells. Immunostaining indicated that CacyBP was present in the cytoplasm of uninduced SH-SY5Y cells, in which the resting Ca^(2+) concentration was relatively lower than that of RA-induced cells. After the RA induction, immunostaining was seen in both the nucleus and cytoplasm. In the RA-induced differentiated SH-SYSY cells, CacyBP was phosphorylated on serine residue(s), while it existed in a dephosphorylated form in normal (uninduced) cells. Thus, the phosphorylation of CacyBP occurs when it is translocated to the nuclear region. The translocation of CacyBP during the RA-induced differentiation of SH-SY5Y cells suggested that this protein might play a role in neuronal differentiation.

      • Knockdown of GCF2/LRRFIP1 by RNAi Causes Cell Growth Inhibition and Increased Apoptosis in Human Hepatoma HepG2 Cells

        Li, Jing-Ping,Cao, Nai-Xia,Jiang, Ri-Ting,He, Shao-Jian,Huang, Tian-Ming,Wu, Bo,Chen, De-Feng,Ma, Ping,Chen, Li,Zhou, Su-Fang,Xie, Xiao-Xun,Luo, Guo-Rong Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.6

        Background: GC-binding factor 2 (GCF2) is a transcriptional regulator that represses transcriptional activity of the epidermal growth factor receptor (EGFR) by binding to a specific GC-rich sequence in the EGFR gene promoter. In addition to this function, GCF2 has also been identified as a tumor-associated antigen and regarded as a potentially valuable serum biomarker for early human hepatocellular carcinoma (HCC) diagnosis. GCF2 is high expressed in most HCC tissues and cell lines including HepG2. This study focused on the influence of GCF2 on cell proliferation and apoptosis in HepG2 cells. Materials and Methods: GCF2 expression at both mRNA and protein levels in HepG2 cells was detected with reverse transcription (RT) PCR and Western blotting, respectively. RNA interference (RNAi) technology was used to knock down GCF2 mRNA and protein expression. Afterwards, cell viability was analyzed with a Cell Counting Kit-8 (CCK-8), and cell apoptosis and caspase 3 activity by flow cytometry and with a Caspase 3 Activity Kit, respectively. Results: Specific down-regulation of GCF2 expression caused cell growth inhibition, and increased apoptosis and caspase 3 activity in HepG2 cells. Conclusions: These primary results suggest that GCF2 may influence cell proliferation and apoptosis in HepG2 cells, and also provides a molecular basis for further investigation into the possible mechanism at proliferation and apoptosis in HCC.

      • KCI등재

        Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

        Yi Zheng,Bo Gao,Li Ye,Lingbao Kong,Wei Jing,Xiaojun Yang,Zhenghui Wu,Linbai Ye 한국미생물학회 2005 The journal of microbiology Vol.43 No.6

        Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing α-mannosidase-like protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1- XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.

      • KCI등재

        LncRNA TMPO-AS1 promotes esophageal squamous cell carcinoma progression by forming biomolecular condensates with FUS and p300 to regulate TMPO transcription

        Luo Xiao-Jing,He Ming-Ming,Liu Jia,Zheng Jia-Bo,Wu Qi-Nian,Chen Yan-Xing,Meng Qi,Luo Kong-Jia,Chen Dong-Liang,Xu Rui-Hua,Zeng Zhao-Lei,Liu Ze-Xian,Luo Hui-Yan 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Esophageal squamous cell carcinoma (ESCC) is one of the most life- and health-threatening malignant diseases worldwide, especially in China. Long noncoding RNAs (lncRNAs) have emerged as important regulators of tumorigenesis and tumor progression. However, the roles and mechanisms of lncRNAs in ESCC require further exploration. Here, in combination with a small interfering RNA (siRNA) library targeting specific lncRNAs, we performed MTS and Transwell assays to screen functional lncRNAs that were overexpressed in ESCC. TMPO-AS1 expression was significantly upregulated in ESCC tumor samples, with higher TMPOAS1 expression positively correlated with shorter overall survival times. In vitro and in vivo functional experiments revealed that TMPO-AS1 promotes the proliferation and metastasis of ESCC cells. Mechanistically, TMPO-AS1 bound to fused in sarcoma (FUS) and recruited p300 to the TMPO promoter, forming biomolecular condensates in situ to activate TMPO transcription in cis by increasing the acetylation of histone H3 lysine 27 (H3K27ac). Targeting TMPO-AS1 led to impaired ESCC tumor growth in a patient-derived xenograft (PDX) model. We found that TMPO-AS1 is required for cell proliferation and metastasis in ESCC by promoting the expression of TMPO, and both TMPO-AS1 and TMPO might be potential biomarkers and therapeutic targets in ESCC.

      • KCI등재

        Plasma metabolites associated with physiological and biochemical indexes indicate the effect of caging stress on mallard ducks (Anas platyrhynchos)

        Zheng Chao,Wu Yan,Liang Zhen Hua,Pi Jin Song,Cheng Shi Bin,Wei Wen Zhuo,Liu Jing Bo,Lu Li Zhi,Zhang Hao 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.2

        Objective: Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks. We designed this experiment to analyze the effects of caging stress on performance parameters and oxidative stress indexes in ducks. Methods: Liquid chromatography tandem mass spectrometry (LC/MS-MS) was used to determine the changes in metabolites in duck plasma at 5 (CR5), 10 (CR10), and 15 (CR15) days after cage rearing and traditional breeding (TB). The associated pathways of differentially altered metabolites were analyzed using Kyoto encyclopedia of genes and genomes (KEGG) database. Results: The results of this study indicate that caging stress decreased performance parameters, and the plasma total superoxide dismutase levels were increased in the CR10 group compared with the other groups. In addition, 1,431 metabolites were detected. Compared with the TB group, 134, 381, and 190 differentially produced metabolites were identified in the CR5, CR10, and CR15 groups, respectively. The results of principal component analysis (PCA) show that the selected components sufficiently distinguish the TB group and CR10 group. KEGG analysis results revealed that the differentially altered metabolites in duck plasma from the CR5 and TB groups were mainly associated with ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and phenylalanine metabolism. Conclusion: In this study, the production performance, blood indexes, number of metabolites and PCA were compared to determine effect of the caging stress stage on ducks. We inferred from the experimental results that caging-stressed ducks were in the sensitive phase in the first 5 days after caging, caging for approximately 10 days was an important transition phase, and then the duck continually adapted. Objective: Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks. We designed this experiment to analyze the effects of caging stress on performance parameters and oxidative stress indexes in ducks.Methods: Liquid chromatography tandem mass spectrometry (LC/MS-MS) was used to determine the changes in metabolites in duck plasma at 5 (CR5), 10 (CR10), and 15 (CR15) days after cage rearing and traditional breeding (TB). The associated pathways of differentially altered metabolites were analyzed using Kyoto encyclopedia of genes and genomes (KEGG) database.Results: The results of this study indicate that caging stress decreased performance parameters, and the plasma total superoxide dismutase levels were increased in the CR10 group compared with the other groups. In addition, 1,431 metabolites were detected. Compared with the TB group, 134, 381, and 190 differentially produced metabolites were identified in the CR5, CR10, and CR15 groups, respectively. The results of principal component analysis (PCA) show that the selected components sufficiently distinguish the TB group and CR10 group. KEGG analysis results revealed that the differentially altered metabolites in duck plasma from the CR5 and TB groups were mainly associated with ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and phenylalanine metabolism.Conclusion: In this study, the production performance, blood indexes, number of metabolites and PCA were compared to determine effect of the caging stress stage on ducks. We inferred from the experimental results that caging-stressed ducks were in the sensitive phase in the first 5 days after caging, caging for approximately 10 days was an important transition phase, and then the duck continually adapted.

      • KCI등재

        Site-directed Mutagenesis of the Toxin from the Chinese Scorpion Buthus martensii Karsch (BmKAS): Insight into Sites Related to Analgesic Activity

        Yong Cui,Yong-Bo Song,Lin Ma,Yan-Feng Liu,Guo-Dong Li,Chun-Fu Wu,Jing-Hai Zhang 대한약학회 2010 Archives of Pharmacal Research Vol.33 No.10

        This study utilized the E. coli expression system to investigate the role of amino acid residues in toxin from the Chinese scorpion - Buthus martensii Karsch (BmKAS). To evaluate the extent to which residues of the toxin core contribute to its analgesic activity, ten mutants of BmKAS were obtained by PCR. Using site-directed mutagenesis, all of these residues were substituted with different amino acids. This study represents a thorough mapping and elucidation of the epitopes that form the molecular basis of the toxin’s analgesic activity. Our results showed large mutant-dependent differences that emphasize the important roles of the studied residues.

      • Implementation of online model updating with ANN method in substructure pseudo-dynamic hybrid simulation

        Yan Hua Wang,Jing Lv,Yan Feng,Bo Wen Dai,Cheng Wang,Jing Wu,Zi Yan Chen 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.28 No.2

        Substructure pseudo-dynamic hybrid simulation (SPDHS) is an advanced structural seismic testing method which combines physical experiment and numerical simulation. Generally, the key components which display nonlinearity first are taken as experimental substructures for actual test, and the remaining parts are modeled in simulation. Model updating techniques can be effectively applied to enhance the model precision of nonlinear numerical elements. Specifically, the constitutive model of the experimental substructure is identified online by the instantaneously-measured data, and the corresponding numerical elements with similar hysteretic behaviors are updated synchronously. Artificial neural network (ANN) can recognize the system which cannot be represented by definite numerical model, and thus avoids the structural response distortion caused by the inherent numerical model defects. In this study, a framework for online model updating in SPDHS with ANN method is expanded to implement actual test validation. Moreover, the effectiveness of ANN method is demonstrated by practical tests of a two-story frame model with bending dampers. Additionally, the unscented Kalman filter technique and offline ANN identification approach are both examined in the test validation. The experimental results show that, under the identical loading history, the online ANN method can significantly reduce the model errors and improve the accuracy of SPDHS.

      • KCI등재

        Efficient Expression of Glucagon-like Peptide-1 Analogue with Human Serum Albumin Fusion Protein in Pichia pastoris Using the Glyceraldehyde-3-phosphate Dehydrogenase Promoter

        Kai Qian,XiaoHai Gong,Bo Guan,SuPing Wu,JingJing Zhang,Jing Qian,YanFei Cai,Yun Chen,ZuoYing Duan,Xin Ma,HuaZhong Li,Jian Jin 한국생물공학회 2015 Biotechnology and Bioprocess Engineering Vol.20 No.4

        Glucagon-like peptide-1 (GLP-1) was a potential therapeutic drug for type II diabetes, mainly because of the stimulatory effect on insulin secretion under condition of high blood glucose. We used PCR to obtain a recombination gene, GGH, in which two GLP-1 (GLP-1A2G) mutants were connected in series and then fused to the N terminal of human serum albumin. The fusion gene was inserted into pGAPZaA plasmid with Saccharomyces cerevisiae α- factor secretion signal sequence, and was expressed by the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The engineered strain was constructed by integrating the recombinant plasmid pGAPZαA/GGH into the genome of Pichia pastoris GS115. Genome PCR and western blot showed that the recombinant P. pastoris successfully expressed the fusion protein GGH. The yield of GGH reached 78 mg/L after 72 h fermentation in a flask, using glucose as the optimal carbon source. Fed-batch fermentation was investigated in a 5 L bioreactor, and the expression level of GGH reached 246 mg/L in 52 h. The fusion protein GGH was purified in four steps, and the final purity was 96.1%. The in vitro bioactivity of GGH was the same as that expressed in P. pastoris by the AOX1 promoter. This study described an efficient way to express GGH fusion protein in P. pastoris using GAP promoter, fermentation was easier to control without carbon source change and fermentation time was 20 h less than AOX1 promotercontrolled GGH fermentation.

      • KCI등재

        Triterpenoid saponins from Clinopodium chinense (Benth.) O. Kuntze and their biological activity

        Yin-Di Zhu,Jing-Yi Hong,Feng-Da Bao,Na Xing,Ling-Tian Wang,Zhong-Hao Sun,Yun Luo,Hai Jiang,Xudong Xu,Nai-Liang Zhu,Hai-Feng Wu,Gui-Bo Sun,Jun-Shan Yang 대한약학회 2018 Archives of Pharmacal Research Vol.41 No.12

        Four new ursane-type triterpenoid saponins, clinopoursaponins A–D (1–4), six new oleanane-type triterpenoid saponins, clinopodiside VII–XII (5–10), as well as eight known triterpene analogues (11–18), were isolated from the aerial parts of Clinopodium chinense (Benth.) O. Kuntze. The structures of the new compounds were determined based on extensive spectral analyses, including 1D (1H and 13C) and 2D NMR experiments (COSY, NOESY, HSQC, 2D TOCSY, HSQC-TOCSY and HMBC), HR-ESI-MS and chemical methods. Compounds 1–18 were evaluated for their protective effects against anoxia/reoxygenation-induced apoptosis in H9c2 cells and cytotoxicities against murine mammary carcinoma cell line 4T1. Compounds 8, 9 and 18 exhibited significant protective effects, while compound 1 exhibited cytotoxic activity with IC50 value of 7.4 μm compared to 7.6 μm for the positive control 10-hydroxycamptothecin.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼