RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        M-RAS Regulate CDH1 Function in Blastomere Compaction during Porcine Embryonic Development

        Zhou, Dongjie,Niu, Yingjie,Cui, Xiang-Shun The Korean Society of Animal Reproduction and Biot 2020 한국동물생명공학회지 Vol.35 No.1

        Cell adhesion plays an important role in the differentiation of the morphogenesis and the trophectoderm epithelium of the blastocyst. In the porcine embryo, CDH1 mediated adhesion initiates at compaction before blastocyst formation, regulated post-translationally via protein kinase C and other signaling molecules. Here we focus on muscle RAS oncogene homolog (M-RAS), which is the closest relative to the RAS related proteins and shares most regulatory and effector interactions. To characterize the effects of M-RAS on embryo compaction, we used gain- and loss-of-function strategies in porcine embryos, in which M-RAS gene structure and protein sequence are conserved. We showed that knockdown of M-RAS in zygotes reduced embryo development abilities and CDH1 expression. Moreover, the phosphorylation of ERK was also decreased in M-RAS KD embryos. Overexpression of M-RAS allows M-RAS KD embryos to rescue the embryo compaction and blastocyst formation. Collectively, these results highlight novel conserved and multiple effects of M-RAS during porcine embryo development.

      • KCI등재

        Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts

        Dongjie Zhou,Xiao-Han Li,Song‑Hee Lee,Geun Heo,Xiang-Shun Cui 한국동물생명공학회(구 한국수정란이식학회) 2022 한국동물생명공학회지 Vol.37 No.1

        Alpha-linolenic acid is an important polyunsaturated fatty acid that exhibits anticancer, anti-inflammatory, and antioxidative effects. In this study, we investigated the protective effects of alpha-linolenic acid on the cell proliferation and differentiation of C2C12 cells under essential amino acid-deficient conditions. Different concentrations of alpha-linolenic acid and essential amino acids were added to the growth and differentiation media. The concentrations of 10 μM of alphalinolenic acid and 2% essential amino acid were chosen for subsequent experiments. Supplementation with alpha-linolenic acid and essential amino acids improved the proliferation and differentiation of C2C12 cells and significantly increased the mRNA levels of catalase, superoxide dismutase, B-cell lymphoma-2, and beclin-1 as well as the protein levels of PPARγ coactivator-1α compared to those in the controls. Moreover, supplementation with alpha-linolenic acid and essential amino acids reduced the levels of phosphorylated H2A.X variant histone, Bcl-2-associated X, p53, and light chain 3 during C2C12 cell proliferation, and increased the expression levels of myogenic factors 4 (myogenin) and 5 during C2C12 cell differentiation. Overall, we determined that alpha-linolenic acid and essential amino acids maintained the cell proliferation and differentiation of C2C12 cells via their anti-oxidative, anti-apoptotic, and anti-autophagic effects.

      • KCI등재

        M-RAS Regulate CDH1 Function in Blastomere Compaction during Porcine Embryonic Development

        Dongjie Zhou,Yingjie Niu,Xiang-Shun Cui 한국동물생명공학회(구 한국동물번식학회) 2020 Journal of Animal Reproduction and Biotechnology Vol.35 No.1

        Cell adhesion plays an important role in the differentiation of the morphogenesis and the trophectoderm epithelium of the blastocyst. In the porcine embryo, CDH1 mediated adhesion initiates at compaction before blastocyst formation, regulated post-translationally via protein kinase C and other signaling molecules. Here we focus on muscle RAS oncogene homolog (M-RAS), which is the closest relative to the RAS related proteins and shares most regulatory and effector interactions. To characterize the effects of M-RAS on embryo compaction, we used gain- and loss-of-function strategies in porcine embryos, in which M-RAS gene structure and protein sequence are conserved. We showed that knockdown of M-RAS in zygotes reduced embryo development abilities and CDH1 expression. Moreover, the phosphorylation of ERK was also decreased in M-RAS KD embryos. Overexpression of M-RAS allows M-RAS KD embryos to rescue the embryo compaction and blastocyst formation. Collectively, these results highlight novel conserved and multiple effects of M-RAS during porcine embryo development.

      • KCI등재

        Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts

        Dongjie Zhou,Xiao-Han Li,Song‑Hee Lee,Geun Heo,Xiang-Shun Cui 한국동물생명공학회(구 한국동물번식학회) 2022 Journal of Animal Reproduction and Biotechnology Vol.37 No.1

        Alpha-linolenic acid is an important polyunsaturated fatty acid that exhibits anticancer, anti-inflammatory, and antioxidative effects. In this study, we investigated the protective effects of alpha-linolenic acid on the cell proliferation and differentiation of C2C12 cells under essential amino acid-deficient conditions. Different concentrations of alpha-linolenic acid and essential amino acids were added to the growth and differentiation media. The concentrations of 10 μM of alphalinolenic acid and 2% essential amino acid were chosen for subsequent experiments. Supplementation with alpha-linolenic acid and essential amino acids improved the proliferation and differentiation of C2C12 cells and significantly increased the mRNA levels of catalase, superoxide dismutase, B-cell lymphoma-2, and beclin-1 as well as the protein levels of PPARγ coactivator-1α compared to those in the controls. Moreover, supplementation with alpha-linolenic acid and essential amino acids reduced the levels of phosphorylated H2A.X variant histone, Bcl-2-associated X, p53, and light chain 3 during C2C12 cell proliferation, and increased the expression levels of myogenic factors 4 (myogenin) and 5 during C2C12 cell differentiation. Overall, we determined that alpha-linolenic acid and essential amino acids maintained the cell proliferation and differentiation of C2C12 cells via their anti-oxidative, anti-apoptotic, and anti-autophagic effects.

      • KCI등재

        A Hydrogel-based First-Aid Tissue Adhesive with Effective Hemostasis and Anti-bacteria for Trauma Emergency Management

        Dongjie Zhang,Li Mei,Yuanping Hao,Bingcheng Yi,Jilin Hu,Danyang Wang,Yaodong Zhao,Zhe Wang,Hailin Huang,Yongzhi Xu,Xuyang Deng,Cong Li,Xuewei Li,Qihui Zhou,Yun Lu 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background Clinical tissue adhesives remain some critical drawbacks for managing emergency injuries, such as inadequate adhesive strength and insufficient anti-infection ability. Herein, a novel, self-healing, and antibacterial carboxymethyl chitosan/polyaldehyde dextran (CMCS/PD) hydrogel is designed as the first-aid tissue adhesive for effective trauma emergency management. Methods We examined the gel-forming time, porosity, self-healing, antibacterial properties, cytotoxicity, adhesive strength, and hemocompatibility. Liver hemorrhage, tail severance, and skin wound infection models of rats are constructed in vivo, respectively. Results Results demonstrate that the CMCS/PD hydrogel has the rapid gel-forming (~ 5 s), good self-healing, and effective antibacterial abilities, and could adhere to tissue firmly (adhesive strength of ~ 10 kPa and burst pressure of 327.5 mmHg) with excellent hemocompatibility and cytocompatibility. This suggests the great prospect of CMCS/ PD hydrogel in acting as a first-aid tissue adhesive for trauma emergency management. The CMCS/PD hydrogel is observed to not only achieve rapid hemostasis for curing liver hemorrhage and tail severance in comparison to commercial hemostatic gel (Surgiflo ®) but also exhibit superior anti-infection for treating acute skin trauma compared with clinical disinfectant gel (Prontosan ®). Conclusions Overall, the CMCS/PD hydrogel offers a promising candidate for first-aid tissue adhesives to manage the trauma emergency. Because of the rapid gel-forming time, it could also be applied as a liquid first-aid bandage for mini-invasive surgical treatment.

      • KCI등재

        Nitric Oxide-induced Protein S-nitrosylation Causes Mitochondrial Dysfunction and Accelerates Post-ovulatory Aging of Oocytes in Cattle

        Niu, Ying-Jie,Zhou, Dongjie,Zhou, Wenjun,Nie, Zheng-Wen,Kim, Ju-Yeon,Oh, YoungJin,Lee, So-Rim,Cui, Xiang-Shun The Korean Society of Animal Reproduction and Biot 2020 한국동물생명공학회지 Vol.35 No.1

        Nitric oxide (NO)-induced protein S-nitrosylation triggers mitochondrial dysfunction and was related to cell senescence. However, the exact mechanism of these damages is not clear. In the present study, to investigate the relationship between in vitro aging and NO-induced protein S-nitrosylation, oocytes were treated with sodium nitroprusside dihydrate (SNP), and the resultant S-nitrosylated proteins were detected through biotin-switch assay. The results showed that levels of protein S-nitroso thiols (SNO)s and expression of S-nitrosoglutathione reductase (GSNOR) increased, while activity and function of mitochondria were impaired during oocyte aging. Addition of SNP, a NO donor, to the oocyte culture led to accelerated oocyte aging, increased mitochondrial dysfunction and damage, apoptosis, ATP deficiency, and enhanced ROS production. These results suggested that the increased NO signal during oocyte aging in vitro, accelerated oocyte degradation due to increased protein S-nitrosylation, and ROS-related redox signaling.

      • KCI우수등재

        Bezafibrate prevents aging in in vitro-matured porcine oocytes

        ( Ju-Yeon Kim ),( Dongjie Zhou ),( Xiang-Shun Cui ) 한국축산학회(구 한국동물자원과학회) 2021 한국축산학회지 Vol.63 No.4

        Bezafibrate, a fibrate drug used as a lipid-lowering agent to treat hyperlipidemia, is a pan-agonist of peroxisome proliferator-activated receptor alpha. It can enhance mitochondrial fatty acid oxidation, oxidative phosphorylation, and mitochondrial biogenesis. After ovulation, oocytes may get arrested at the metaphase II (MII) stage until fertilization beyond optimal timing, which is termed as post-ovulatory aging. Post-ovulatory aging is a disease that degrades DNA, mitochondria, and oxidative system, and has a negative impact on embryo development and quality; however, the impact of bezafibrate during post-ovulatory aging has not been fully defined. In the present study, we assessed the ability of bezafibrate to prevent the progression of aging in in vitro conditions as well as the underlying mechanisms in pigs. An appropriate concentration of this drug (50 μM) was added, and then oxidative stress, reactive oxygen species downstream, mitochondrial biogenesis, and mitochondrial function were analyzed via immunofluorescence staining and real-time polymerase chain reaction. Bezafibrate significantly alleviated reactive oxygen species and ameliorated glutathione production simultaneously in oocytes and embryos. Moreover, it diminished H2A.X and attenuated CASPASE 3 expression produced by oxidative stress in oocytes and embryos. Furthermore, bezafibrate remarkably improved the mitochondrial function and blastocyst quality as well as markedly reduced the mitochondria/TOM20 ratio and mtDNA copy number. The elevated PARKIN level indicated that mitophagy was induced by bezafibrate treatment after post-ovulatory aging. Collectively, these results suggest that bezafibrate beneficially affects against porcine post-ovulatory oocyte aging in porcine by its antioxidant property and mitochondrial protection.

      • KCI등재

        Nitric Oxide-induced Protein S-nitrosylation Causes Mitochondrial Dysfunction and Accelerates Post-ovulatory Aging of Oocytes in Cattle

        Ying-Jie Niu,Dongjie Zhou,Wenjun Zhou,Zheng-Wen Nie,Ju-Yeon Kim,YoungJin Oh,So-Rim Lee,Xiang-Shun Cui 한국동물생명공학회(구 한국동물번식학회) 2020 Journal of Animal Reproduction and Biotechnology Vol.35 No.1

        Nitric oxide (NO)-induced protein S-nitrosylation triggers mitochondrial dysfunction and was related to cell senescence. However, the exact mechanism of these damages is not clear. In the present study, to investigate the relationship between in vitro aging and NO-induced protein S-nitrosylation, oocytes were treated with sodium nitroprusside dihydrate (SNP), and the resultant S-nitrosylated proteins were detected through biotin-switch assay. The results showed that levels of protein S-nitroso thiols (SNO)s and expression of S-nitrosoglutathione reductase (GSNOR) increased, while activity and function of mitochondria were impaired during oocyte aging. Addition of SNP, a NO donor, to the oocyte culture led to accelerated oocyte aging, increased mitochondrial dysfunction and damage, apoptosis, ATP deficiency, and enhanced ROS production. These results suggested that the increased NO signal during oocyte aging in vitro, accelerated oocyte degradation due to increased protein S-nitrosylation, and ROS-related redox signaling.

      • KCI등재

        Optimization of a double crystal monochromator

        Jiang Zheng,Wang Eryan,Song Ruiqiang,Guo Siming,Wu Jinjie,Hou Dongjie,An Zhenghua,Zhou Pengyue 한국물리학회 2021 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.79 No.8

        The double crystal diffraction structure based on Bragg diffraction is the core component of the monochromator that is widely used in synchrotron radiation beam lines and monochromatic X-ray radiation devices. The stability of monochromatic X-rays produced by using the T-structure double crystal monochromator at National Institute of Metrology was investigated experimentally. Due to its structural defects, the X-ray flux of the T-structured double crystal monochromator shows poor long-term stability. Inspired by the Channel-cut monochromator structure, we designed a new double crystal monochromator structure to improve the long-term stability of the X-ray flux. Experiments showed that the stability of the monochromatic X-ray flux for the new double crystal monochromator structure was better than 1.0%@1 h, and the energy region and flux rate of the monochromatic X-rays are significantly improved. This work provides a stable and reliable monochromatic X-ray source for the calibration of X/γ detectors such as satellite load detectors, which will contribute to the development of X/γ detection technology.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼