RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The Role of TIP60 in Early Porcine Embryonic Development

        Wenjun Zhou,Jing Guo,Nam-Hyung Kim,Xiang-Shun Cui 한국동물생명공학회(구 한국동물번식학회) 2017 발생공학 국제심포지엄 및 학술대회 Vol.2017 No.10

        The acetyltransferase TIP60 (also known as Kat5) is a member of the MYST family of histone acetyltransferases and was initially identified as a cellular protein. TIP60 acetylates histone and nonhistone proteins and is involved in diverse biological processes, including apoptosis, cell cycle, and DNA damage responses. In this study, a specific inhibitor of TIP60 was used to detect the function of TIP60 in porcine parthenogenetic embryos. The results showed that TIP60 inhibition impaired porcine parthenogenetic embryonic development. The mechanism of TIP60 was also determined. We found that the TIP60 inhibition impaired embryonic development by ROS induced DNA damage, as demonstrated by the number of γH2A in the nuclei. TIP60 inhibition triggered DNA damage through the regualetion of p53-p21 pathway and TIP60 played a role in DNA repair. TIP60 inhibition decreased the efficiency of DNA repair by regulating 53BP1-dependent repair after DNA damage. Inhibition of TIP60 also increased the adaptive response, autophagy, by modulating LC3. Therefore, TIP60 plays a role in early porcine parthenogenetic embryonic development by regulating DNA damage and repair.

      • Nuclear Transportation of Pyruvate Dehydrogenase Controls the Zygotic Genome Activation in Pig

        Wenjun Zhou,Ying-Jie Niu,Zheng-Wen Nie,Kyung-Tae Shin,Yong-Han Kim,Xiang-Shun Cui 한국수정란이식학회 2018 한국수정란이식학회 학술대회 Vol.2018 No.11

        The porcine zygotic genome activation occurs along with global epigenetic remolding at the 4-cell stage. The histone acetylation, regulating DNA transcription, replication and so on, requires adequate acetyl-CoA. Acetyl-CoA produced by translocated pyruvate dehydrogenase in the nucleus of mammalian cells has been reported, which is commonly considered locating in the mitochondria. To find out whether the nuclear pyruvate dehydrogenase regulating the histone acetylation by controlling generation of acetyl-CoA, a multiple sgRNAs-CRISPR/Cas9 targeting strategy was employed to generate a pyruvate dehydrogenase E1 alpha1 (Pdha1) knockout (KO) parthenogenetic embryo model. Results showed that the targeting efficiency of Pdha1 reached more than 90%. Hence, this model was used in the subsequent experiments. Furthermore, a translocation of Pdha1 during zygotic genome activation was found by immunofluorescent staining and was significantly inhibited by Pdha1 KO. Meanwhile, the 8-cell stage embryo rate significantly decreased after 72 h (24.19% vs 12.53%, control vs Pdha1 KO), indicating a 4-cell arrest. In addition, the nuclear histone acetylation level significantly decreased when Pdha1 was KO. To determine whether the zygotic genome transcription was affected, the qPCR was performed and showed that the mRNA level of Eif1A, Acly, Sqle and Pdha1 all dropped significantly in the Pdha1 KO group compared to the control. In conclusion, the translocated Pdha1 generates acetyl-CoA for histone acetylation inside the nucleus of porcine embryos, which promotes the zygotic genome activation of porcine embryos.

      • SCOPUS

        Research and Application of Fiber Bragg Grating Sensor in Geological Disaster Automation Monitoring

        Liu Yimin,Wang Jie,Ji Weifeng,Zhou Ce,Chen Wenjun 보안공학연구지원센터 2014 International Journal of Control and Automation Vol.7 No.10

        In this paper, fiber grating technology is used for accurately measure stresses, temperature and displacement. The paper introduces the basic principles of FBG technology and the wavelength demodulation method of FBG sensors, and put fiber grating technology into practical engineering projects. The paper design a optical fiber grating real-time automation monitoring system to distributed measure stress, temperature and displacement in geological disaster body, to provide effective technical supports for geological disaster prevention and mitigation.

      • KCI등재

        Numerical and Experimental Studies on the Effects of the TBM Cutter Profile on Rock Cutting

        Wenjun Duan,Longguan Zhang,Mengqi Zhang,Yemao Su,Jiliang Mo,Zhongrong Zhou 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.1

        This paper explores the effect of the profile of tunnel boring machine (TBM) cutters on the rock cutting performance via the use of a particle flow discrete element model. Two of the most commonly used cutters, namely a flat-tip cutter and a circular-tip cutter, are considered in the study. Reduced-scale rotary rock cutting experiments are performed to verify the key conclusions obtained by the numerical analysis. The results from both the simulations and experiments indicate that, at the same penetration depth, the volumes of rock chips produced by the two cutters are similar, but the normal force of the circular-tip cutter is much smaller than that of the flat-tip cutter, leading to a lower specific energy. Contact analysis implemented by a finite element model further reveals that the stress field caused by the circular-tip cutter has a higher magnitude and is concentrated in a smaller area, indicating that the circular-tip cutter could penetrate the rock with lower normal force and produce less rock powder, which could avoid excessive rock broken.

      • KCI등재

        Development, Validation and Comparison of Artificial Neural Network and Logistic Regression Models Predicting Eosinophilic Chronic Rhinosinusitis With Nasal Polyps

        Zhou Huiqin,Fan Wenjun,Qin Danxue,Liu Peiqiang,Gao Ziang,Lv Hao,Zhang Wei,Xiang Rong,Xu Yu 대한천식알레르기학회 2023 Allergy, Asthma & Immunology Research Vol.15 No.1

        Purpose: Chronic rhinosinusitis with nasal polyps (CRSwNP) can be classified into eosinophilic CRSwNP (eCRSwNP) and non-eosinophilic CRSwNP (non-eCRSwNP) by tissue biopsy, which is difficult to perform preoperatively. Clinical biomarkers have predictive value for the classification of CRSwNP. We aimed to evaluate the application of artificial neural network (ANN) modeling in distinguishing different endotypes of CRSwNP based on clinical biomarkers. Methods: Clinical parameters were collected from 109 CRSwNP patients, and their predictive ability was analyzed. ANN and logistic regression (LR) models were developed in the training group (72 patients) and further tested in the test group (37 patients). The output variable was the diagnosis of eCRSwNP, defined as tissue eosinophil count > 10 per high-power field. The receiver operating characteristics curve was used to assess model performance. Results: A total of 15 clinical features from 60 healthy controls, 60 eCRSwNP and 49 non-eCRSwNP were selected as candidate predictors. Nasal nitric oxide levels, peripheral eosinophil absolute count, total immunoglobulin E, and ratio of bilateral computed tomography scores for the ethmoid sinus and maxillary sinus were identified as important features for modeling. Two ANN models based on 4 and 15 clinical features were developed to predict eCRSwNP, which showed better performance, with the area under the receiver operator characteristics significantly higher than those from the respective LR models (0.976 vs. 0.902, P = 0.048; 0.970 vs. 0.845, P = 0.011). All ANN models had better fits than single variable prediction models (all P < 0.05), and ANN model 1 had the best predictive performance among all models. Conclusions: Machine learning models assist clinicians in predicting endotypes of nasal polyps before invasive detection. The ANN model has the potential to predict eCRSwNP with high sensitivity and specificity, and is superior to the LR model. ANNs are valuable for optimizing personalized patient management.

      • KCI등재

        Effect of Au on the Performance of Porous Silicon/V2O5 Nanorods Heterojunctions to NO2 Gas

        Wenjun Yan,Minghui Zhou,Jiran Liang,Dengfeng Wang,Yulong Wei,Yuxiang Qin 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2016 NANO Vol.11 No.7

        A novel composite of Au-functionalized porous silicon (PS)/V2O5 nanorods (PS/V2O5:Au) was prepared to detect NO2 gas. PS/V2O5 nanorods were synthesized by a heating process of pure vanadium film on PS, and then the obtained PS/V2O5 nanorods were functionalized with dispersed Au nanoparticles. Various analytical techniques, such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), have been employed to investigate the properties of PS/V2O5:Au. Herein, the PS/V2O5:Au sample exhibited improved NO2-sensing performances in response, stability and selectivity at room temperature (25℃), compared with the pure PS/V2O5 nanorods. These phenomena were closely related to not only the dispersed Au nanoparticles acting as a catalyst but also the p-n heterojunctions between PS and V2O5 nanorods. Whereas, more Au nanoparticles suppressed the improvement of response to NO2 gas.

      • SCIESCOPUSKCI등재

        Endoplasmic Reticulum Stress-Mediated p62 Downregulation Inhibits Apoptosis via c-Jun Upregulation

        ( Wenjun Yu ),( Busong Wang ),( Liang Zhou ),( Guoqiang Xu ) 한국응용약물학회 2021 Biomolecules & Therapeutics(구 응용약물학회지) Vol.29 No.2

        Cereblon (CRBN), a substrate receptor of cullin 4-RING E3 ligase (CRL4) regulates the ubiquitination and degradation of c-Jun, mediating the lipopolysaccharide-induced cellular response. However, the upstream signaling pathway that regulates this process is unknown. In this study, we describe how endoplasmic reticulum (ER) stress reversely regulates sequestosome-1 (p62)and c-Jun protein levels. Furthermore, our study reveals that expression of p62 attenuates c-Jun protein levels through the ubiquitinproteasome system. Conversely, siRNA knockdown of p62 elevates c-Jun protein levels. Immunoprecipitation and immunoblotting experiments demonstrate that p62 interacts with c-Jun and CRBN to form a ternary protein complex. Moreover, we find that CRBN knockdown completely abolishes the inhibitory effect of p62 on c-Jun. Using brefeldin A as an inducer of ER stress, we demonstrate that the p62/c-Jun axis participates in the regulation of ER stress-induced apoptosis, and that CRBN is required for this regulation. In summary, we have identified an upstream signaling pathway, which regulates p62-mediated c-Jun degradation. Our findings elucidate the underlying molecular mechanism by which p62/c-Jun axis regulates the ER stress-induced apoptosis, and provide a new molecular connection between ER stress and apoptosis.

      • KCI등재

        Temperature characteristics of indentation rolling resistance of belt conveyor

        Lidong Zhou,Zengfa Wu,Yongchao Li,Huiqiang Yao,Yuan Liu,Yuan Yuan,Wenjun Meng,Liangliang Han,Xueqin Cao 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.8

        In order to study the influence of temperature on the indentation rolling resistance of belt conveyor, theoretical analysis, numerical simulation analysis and experimental study of conveyor belt indentation rolling resistance with temperature characteristics were carried out in this paper, and the influence rules of different factors on the indentation rolling resistance of belt conveyor were obtained. First, the three-component Maxwell model is chosen as the viscoelastic model for the conveyor belt rubber material, and the viscoelastic modulus function based on temperature effects is constructed from the DMA experimental data fitting. Second, we introduce the one-dimensional Winkler foundation model to derive a mathematical expression for the indentation rolling resistance based on temperature properties. Then, a mathematical model of the indentation rolling resistance of a conveyor belt with temperature characteristics is developed in MATLAB and numerical simulations are performed. Finally, using the existing experimental equipment to conduct experiments, the experimental results are compared with the numerical simulation result. The results show that the theoretical numerical simulation results of the indentation rolling resistance with temperature effect presented in this paper have a consistent change trend with the experimental results; at constant temperature and constant load, the indentation rolling resistance increases with increasing band velocity; at constant temperature and constant velocity, the indentation rolling resistance increases with increasing load; at constant load and speed, when the temperature is lower than 0 °C or higher than 25 °C, the rolling resistance increases with the increase of temperature, when the temperature is between 0 °C and 25 °C, the rolling resistance decreases gradually with the increase of temperature.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼