RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        自然換氣倂用型하이브리드 空調時에 流入外氣의 溫?濕度와 流入風量의 變化가 室內環境에 미치는 影響

        장현재,加藤信介 대한건축학회 2002 대한건축학회논문집 Vol.18 No.6

        The performance of a hybrid air-conditioning system which utilizes wind-induced cross ventilation is investigated in the office setting. The characteristics of flow, temperature fields, humidity fields and age of air are examined using CFD simulation under various conditions of in-flowing outdoor air, i.e.,change in air temperature, humidity and variable air exchange rate. The room air controlling system (VAV system) which is used to keep the task zone at a target temperature in this simulation, is reproduced through changing the supply airflow rate of the air-conditioning system. With that, we can estimate how much cooling heat is required by the air-conditioning system to keep the task zone at the target temperature, and can analyze the details of the flow and the temperature fields in their respective conditions. When the outdoor air flows into the room sinks to close to the ground, it does not mix with the air in the room, and thus can cools the task zone well. The cooling load of the mechanical AC system is shown to increase with both the increases of the outdoor air temperature, and with the decreases of the in-flowing outdoor air volume.

      • KCI등재

        공기조화, 냉동 분야의 최근 연구 동향

        한화택(Hwataik Han),신동신(Dong Sin Shin),최창호(Chang-Ho Choi),이대영(Dae-Young Lee),김서영(Seo Young Kim),권용일(Yong-Il Kwon) 대한설비공학회 2008 설비공학 논문집 Vol.20 No.6

        A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and com¬pressors were performed in fluid machinery. Characteristics of flow and heat transfer and pip¬ing optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-charnber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

      • SCOPUSKCI등재

        A Study on Pressure Loss by the Material of AHU-linked Vegetation Bio-filter and its Operational Energy Efficiency

        Tae-Han Kim,So-Dam Lee,Sung-Eun Park 한국인간·식물·환경학회 2017 인간식물환경학회지 Vol.20 No.5

        Recently, the air quality issue came to the fore to the occupants of indoor areas with the detection of a large amount of indoor air pollutants such as formaldehyde that causes headache and atopic dermatitis. In order to address this issue, the use of indoor air purifying plants is considered positively as an ecological improvement option. However, the objective performance verification on indoor air-conditioning air volume has not been sufficient. This study aims to verify possible linkage with a building’s air conditioning equipment in order to optimize indoor air-conditioning effects by vegetation bio-filters. To this end, 4 different types of air filter material and AHU (Air Handling Unit) system were linked under air conditions of total wind volume of 400, 600, 800, 1,000 CMH and pressure loss by material was monitored objectively. Finally, material-specific power consumption for system operation was calculated to review energy efficiency. As for pressure loss by material, in terms of total wind volume of 800±1.8 CMH, Pre filter was lowest at –11.69 mmAq and LMF-based vegetation mat was highest at –219.94 mmAq. Based on this, as for material-specific power consumption, the Pre filter, which has the lowest pressure loss, was expected to have power consumption 94.7% lower than the LMF-based vegetation mat.

      • KCI등재

        A Study on Pressure Loss by the Material of AHU-linked Vegetation Bio-filter and its Operational Energy Efficiency

        김태한,이소담,박성은 인간식물환경학회 2017 인간식물환경학회지 Vol.20 No.5

        Recently, the air quality issue came to the fore to the occupants of indoor areas with the detection of a large amount of indoor air pollutants such as formaldehyde that causes headache and atopic dermatitis. In order to address this issue, the use of indoor air purifying plants is considered positively as an ecological improvement option. However, the objective performance verification on indoor air-conditioning air volume has not been sufficient. This study aims to verify possible linkage with a building’s air conditioning equipment in order to optimize indoor air-conditioning effects by vegetation bio-filters. To this end, 4 different types of air filter material and AHU (Air Handling Unit) system were linked under air conditions of total wind volume of 400, 600, 800, 1,000 CMH and pressure loss by material was monitored objectively. Finally, material-specific power consumption for system operation was calculated to review energy efficiency. As for pressure loss by material, in terms of total wind volume of 800±1.8 CMH, Pre filter was lowest at –11.69 mmAq and LMF-based vegetation mat was highest at –219.94 mmAq. Based on this, as for material-specific power consumption, the Pre filter, which has the lowest pressure loss, was expected to have power consumption 94.7% lower than the LMF-based vegetation mat.

      • 고속버스 자연환기구의 기류패턴 분석

        유호천(Yoo Ho-Chun),노경환(Noh Kyoung-Hwan) 한국태양에너지학회 2009 한국태양에너지학회 학술대회논문집 Vol.2009 No.11월

        In express bus which has no window, the air quality inside the bus is very critical for the passengers who staying for an extended time. Air conditioning system using natural energy is expected to significantly improve the air quality while the bus runs the suburban area. But the express buses today usually attempt to ventilate using air conditioning system, rather than natural ventilation. In this study, analysis of existing ventilation opening and the new ventilation system on roof, using computer simulation. As a result, two cases using existing ventilation device was found to be effective for partial ventilation only, while the air in front remains standstill. The new system proved to have promoted more dynamic ventilation in most of space.

      • KCI등재

        토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석

        남상운(Sang-Woon Nam),김영식(Young-Shik Kim) (사)한국생물환경조절학회 2009 생물환경조절학회지 Vol.18 No.3

        공기유동 제어기술의 개발을 위한 기초자료를 제공할 목적으로 토마토 재배 온실의 냉난방과 환기 및 공기유동 관련 실태를 조사하고, 온실유형과 난방방식별 온습도 분포를 실측하여 균일도를 분석하였다. 충남부여 세도지역의 토마토 재배 온실 136농가를 대상으로 조사한 결과 대부분을 차지하는 단동 플라스틱 온실의 천창 설치 비율이 낮고 환기팬과 유동팬 설치비율도 매우 낮을 뿐만 아니라 설치제원도 편차가 매우 큰 것으로 나타났다. 아치형 단동 플라스틱온실의 천창환기 구조의 개발보급과 연동곡부의 천창도 지붕상부로 이동시킬 필요가 있으며, 개별 천창구조 및 환기팬과 유동팬에 대한 설치 가이드라인의 제정이 요구된다. 냉방설비를 설치한 농가는 하나도 없었으며 난방방식의 대부분을 차지하는 온풍난방에서 덕트의 설치제원 역시 편차가 큰 것으로 나타났고, 온풍덕트의 배기풍속 및 배기온도 또한 거리에 따른 편차가 매우 큰 것으로 관측되었다. 수출경쟁력 확보를 위한 고품질의 생산물을 연중 안정적으로 생산하기 위해서는 온실냉방기술의 보급이 절실하며 난방방식이나 덕트설치 방식의 개선이 필요한 것으로 판단된다. 온실내 온습도 분포가 균일한지 여부를 판단하는 지표로 사용되고 있는 최대 편차와 실제 균등한 정도를 나타낼 수 있는 균일도와의 관계를 분석해 본 결과 높은 상관관계를 보였으나 주간에는 직선식으로 야간에는 2차곡선식으로 다르게 표현되었다. 온습도 분포의 균일한 정도를 판정할 수 있는 객관적인 기준이 마련된다면 최대편차 대신 균일도를 지표로 사용하는 것이 더 합리적일 것으로 판단된다. 온실유형과 난방방식에 따라 온습도분포의 균일도가 상당히 다른 것을 확인할 수 있었으며 야간에는 온수난방의 경우 이랑배관으로, 온풍난방의 경우 온풍덕트의 적절한 배치를 통하여, 주간에는 환기와 공기유동을 통하여 균일도를 개선할 수 있을 것으로 판단되었다. A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

      • KCI등재

        Assessment of Plant Growth Stability on Vegetation Unit-based Bio-filter linked to AHU

        김태한,박성은,김광진 인간식물환경학회 2017 인간식물환경학회지 Vol.20 No.5

        People today spend 80% of their time indoors and have been showing keen interests in air quality since 2015 due to harmful chemical issues such as humidifier disinfectants. Although plant-based air purification method is widely known to the public, its objective performance and air-conditioning efficiency have been limited. In particular, in the case of publicly used places frequented by many and unspecified persons, high air-conditioning wind volume is required and it is difficult to secure the required total wind volume with the current air purification method using plants. Therefore, in order to secure air-conditioning wind volume when linked with plants, this study aims to verify stability in using vegetation units that can be linked with building air-conditioning equipment. To this end, vegetation units and AHU were linked for 40 hours under no irrigation conditions and ecological environmental changes were monitored objectively. Pressure loss by total wind volume of vegetation units was verified, and soil moisture, Chlorophyll, and FVC were monitored. First, soil moisture was converged to 0% at a spot where wind volume is concentrated in vegetation units. In both of two types of tree species, chlorophyll showed a change of 1.2 - 2.9 SPAD and FVC showed a change of 4-29% after the experiment.

      • KCI등재

        공조기를 이용한 실내 라돈 저감 효율 평가

        김민준,조승연 한국냄새환경학회 2020 실내환경 및 냄새 학회지 Vol.19 No.4

        This experiment evaluated the efficiency of mechanical ventilation, one of the measures to reduce indoor radon concentration in residential spaces. In the most popular ventilation rates of the air conditioning system, the most efficient air conditioning system was confirmed by checking the time when the radon concentration reached the lowest level, the radon reduction rate, and the radon concentration that could be lowered as much as possible. The results showed a reduction rate of up to 80% or more as a result of conducting the experiment by blocking the inflow of outside air. It was confirmed that the time to reach the lowest concentration after starting the mechanical ventilation was about 6 hours to a maximum of 7 hours. Therefore, this study verified that indoor radon concentrations can be efficiently reduced by using a mechanical ventilation system.

      • KCI등재

        설비공학 분야의 최근 연구 동향

        한화택(Hwataik Han),신동신(Dong Sin Shin),최창호(Chang-Ho Choi),이대영(Dae-Young Lee),김서영(Seo Young Kim),권용일(Yong-Il Kwon) 대한설비공학회 2008 설비공학 논문집 Vol.20 No.12

        The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micro-pump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel. cell stacks and ice slurry systems. For the heat exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant coating systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

      • KCI등재

        설비공학 분야의 최근 연구 동향

        한화택(Hwataik Han),최창호(Chang-Ho Choi),이대영(Dae-Young Lee),김서영(Seo Young Kim),권용일(Yong-Il Kwon),최종민(Jong Min Choi) 대한설비공학회 2009 설비공학 논문집 Vol.21 No.12

        This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼