RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        수소 생산을 위한 바이오오일 수증기 개질 반응에서의 니켈계 촉매 연구동향

        이다해,서현명,송윤하,이재경 한국청정기술학회 2023 청정기술 Vol.29 No.3

        최근 탄소중립을 위한 청정에너지로 주목받고 있는 수소는 기존에 화석연료의 수증기 개질 반응을 통한 생산에 의존해왔다. 하지만, 이산화탄소의 방출로 인한 한계가 있어 바이오매스 유래 바이오오일의 수증기 개질 반응이 대안으로 제안되고 있다. 바이오오일의 큰 분자량과 다양한 작용기를 가진 탄화수소들이 섞여 있는 복잡성으로 인해 Ni/Al2O3 개질 촉매의 비활성화되는 문제가 발생해 니켈계 촉매의 개선이 필요하다. 본 총설에서는 바이오오일의 수증기 개질 반응에 이용되는 니켈계 촉매의개선을 활성상, 담체 및 조촉매의 관점에서 정리했다. 활성상은 고분자의 탄화수소들의 C-C, C-H 결합을 끊어 분해 및 전환하고, 귀금속 및 전이금속이 활용될 수 있다. 담체 및 조촉매는 격자산소를 이용하거나 산점을 억제해 촉매의 비활성화의 주요원인인 탄소 침적을 억제하는 방식으로 촉매를 개선할 수 있다. 바이오오일에 기반한 청정수소 생산에 있어 우수한 성능의 개질촉매 개발은 중요한 역할을 할 것이다. Hydrogen has been gaining a lot of attention as a possible clean energy source that can aid in reaching carbon neutrality. Currently, hydrogen production has relied on the steam reforming of fossil fuels. However, due to the carbon dioxide emissions caused by this process, hydrogen production based on the steam reforming of bio-oil derived from biomass has been proposed as an alternative approach. In order to use this alternative approach efficiently, one of the key issues that must be overcome is that the complexity of bio-oil, which has a large molecular weight and diverse functional groups of hydrocarbons, promotes the catalytic deactivation of nickel-based catalysts. In this review, research efforts to improve nickel-based catalysts for the steam reforming of bio-oil have been discussed in terms of the active phase, support, and promoters. The active phases are involved in activating C-C and C-H bonds of high-molecular-weight hydrocarbons, and noble and transition metals can be utilized. In terms of the support and promoters, the catalytic deactivation of Ni-based catalysts can be inhibited by utilizing reactive lattice oxygen for support or by suppressing the acidity. The development of active and stable Ni-based reforming catalysts plays a critical role in clean hydrogen production based on bio-oils.

      • KCI등재

        Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

        Vo, Anh Thi Hoang,Lee, Hong-shik,Kim, Sangyong,Cho, Jin Ku The Korean Society of Clean Technology 2016 청정기술 Vol.22 No.4

        As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

      • KCI등재

        Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

        Anh Thi Hoang Vo,Hong-shik Lee,Sangyong Kim,Jin Ku Cho 한국청정기술학회 2016 청정기술 Vol.22 No.4

        As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwaveassisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of H2O : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at 180 ℃. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

      • Efficient upgrading of bio-tar over mesoporous silica based catalyst in supercritical ethanol

        이진혁,이인구,최혜영,이관영 한국공업화학회 2018 한국공업화학회 연구논문 초록집 Vol.2018 No.0

        Biofuels derived from lignocellulosic biomass have great potential to solve the problems related to petroleum fuel usage, with advantages of lower CO<sub>2</sub> emission and sustainability. Pyrolysis is one of the most promising thermal conversion of lignocellulosic biomass. However, pyrolysis oil from pyrolysis process of lignocellulosic biomass, which is complex mixtures of oxygenated molecules, is responsible for high acidity and low energy density. Therefore, many research groups have focused on the upgrading of pyrolysis oil, preferably via hydrodeoxygenation (HDO), to utilize the hydrocarbon fuels and chemical production. The aim of the present work is to investigate the performances of the nickel-based catalyst supported by SBA-15 to convert bio-tar into less oxygenated compounds in supercritical ethanol environment. Among the catalysts, Mg-Ni-Mo/SBA-15 was highly active to enhance deoxygenation of bio-tar, leading to the formation hydrocarbons and aromatics.

      • KCI등재

        Hydrogenation of methyl methacrylate under mild conditions using biosynthesis Ru catalyst

        Hongling Zhou,Yangqiang Huang,Youwei Cheng,Lijun Wang,Xi Li 한국공업화학회 2017 Journal of Industrial and Engineering Chemistry Vol.47 No.-

        Hydrogenation of methyl methacrylate (MMA) was investigated over Ru-based catalyst supported onactive carbons (AC), which was prepared by bio-reduction method, using C. Platycladi (CP) leaf extract asreductant. By varying reaction temperature, hydrogen pressure and reaction time, hydrogenation ofMMA over the biosynthesis Ru-based catalyst was carried out, and resulted the optimum conditions,30 C (room temperature), 2.0 MPa, and 50 min. The as-prepared Ru/AC catalyst showed high catalyticactivity towards the hydrogenation of MMA, affording 100% of MMA conversion even under mildconditions without solvent and methyl isobutyrate was the only product.

      • KCI등재

        마이크로웨이브를 이용한 효율적인 탈산소탈수(DODH) 반응: 갈락토스 유래 아디픽산의 합성

        신나라 ( Nara Shin ),권소현 ( Sohyun Kwon ),김영규 ( Young Gyu Kim ) 한국공업화학회 2017 공업화학 Vol.28 No.2

        나일론의 단량체인 아디픽산을 바이오매스인 갈락토스로부터 얻기 위한 효율적인 합성법을 개발하였다. 백금촉매를 이용한 갈락토스의 산화반응을 통해 얻어진 갈락타릭산으로부터 마이크로웨이브를 이용한 탈산소탈수(DODH)반응을 통하여 30 min의 매우 짧은 반응 시간 안에 97%의 높은 수율로 아디픽산의 주요 중간체인 뮤코네이트를 합성하였다. 생성된 뮤코네이트는 팔라듐 촉매를 이용한 수소화 반응 및 가수분해 반응을 통하여 성공적으로 나일론의 단량체인 고순도의 아디픽산으로 전환되었다. An efficient synthetic process for bio-based adipic acid, a monomer for nylon 66, was developed from galactose. Galactaric acid, prepared from a mild oxidation of galactose using a Pt catalyst, was successfully converted to muconate, a key intermediate for adipic acid, by an efficient microwave-assisted DODH (deoxydehydration) reaction. The high efficiency of the microwave-assisted reaction greatly reduced the overall reaction time to 30 min. and resulted in an excellent yield of 97% of muconate. The catalytic hydrogenation of muconate followed by the acidic hydrolysis successfully produced the desired adipic acid in high purity after recrystallization.

      • KCI등재후보

        생분해 촉매제를 이용한 산화생분해 바이오 필름 개발

        이진규,정동석,유영선 한국포장학회 2016 한국포장학회지 Vol.22 No.3

        In this study, Biodegradable masterbatch (M/B) was prepared by different kinds and content of biodegradable catalysts added to oxo biodegradable plastics. The bio film was prepared by adding biodegradable M/B to the polyethylene pellet, and the change of physical properties by UV and heat treatment and the stability as food packaging material were confirmed. As a result of the physical property change, Fe salt and Al salt bio film was superior to Ni salt bio film about a decrease in physical property. However, considering the raw material cost and industrial availability, M/B containing Fe salt was selected and additional experiments were conducted by concentration. The bio films prepared with Fe salt M/B 1.0, 1.5 and 2.0 wt% showed excellent physical properties.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼