RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Distributed Resource Allocation in Two-Hierarchy Networks

        Shuhui Liu,Yongyu Chang,Guangde Wang,Dacheng Yang 한국전자통신연구원 2012 ETRI Journal Vol.34 No.2

        In this paper, a new distributed resource allocation algorithm is proposed to alleviate the cross-tier interference for orthogonal frequency division multiplexing access macrocell and femtocell overlay. Specifically, the resource allocation problem is modeled as a non-cooperative game. Based on game theory, we propose an iterative algorithm between subchannel and power allocation called distributed resource allocation which requires no coordination among the two-hierarchy networks. Finally, a macrocell link quality protection process is proposed to guarantee the macrocell UE's quality of service to avoid severe cross-tier interference from femtocells. Simulation results show that the proposed algorithm can achieve remarkable performance gains as compared to the pure waterfilling algorithm.

      • KCI등재

        Construction of Phenol/O2 Fuel Cell with CuO/MWCNTs Modified Electrode as Anode

        Shuhui Liu,Yuan Wu,Yonglei Xing,Yan Hai,Juan Peng,Gang Ni,Xiaoyong Jin 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.10

        Traditional biofuel cells (BFCs) are devices that use biological catalysts to catalyze the oxidation of organic materials and in the meantime convert chemical energy into electrical energy. In this work, a nonenzymatic catalyst that integrated copper oxide with multi-walled carbon nanotubes (CuO/MWCNTs) was synthesized by a simple solvothermal method, and the composites show an outstanding electrocatalytic activity for oxidation of phenol due to the synergistical contribution of CuO nanoparticles and MWCNTs. The effects of the pH, concentration of electrolyte and phenol and scan rate on the phenol oxidation are investigated. Benefitting from the excellent performance toward phenol oxidation, a H-type phenol fuel cell was fabricated with CuO/MWCNTs as anode material and electro-deposited platinum film as cathode material. The results show that the phenol fuel cell has an open-circuit potential (OCP) of 0.69 V and can produce a maximum power density of 0.25 mW · cm -2 at 0.44 V with 500 mg · L -1 phenol and 0.1 mol · L -1 PBS. The stability test revealed that the fuel cell could still deliver about 0.24 mW · cm -2 after repeating the test for five times, indicating that the fuel cell has good stability.

      • KCI등재

        Tannic Acid and Ferrous Sulfate Modified Kapok Fiber for Oil-water Separation

        Guizhen Ke,Shuhui Chen,Jiani Tang,Huanmin Li,Keshuai Liu 한국섬유공학회 2022 Fibers and polymers Vol.23 No.11

        Biodegradable oil absorbing materials have attracted extensive attention in dealing with oil spill pollution. Todevelop more excellent oleophilic oil sorbent, the combination of tannic acid and ferrous sulfate was employed to treat therenewable and biodegradable natural kapok fiber. The as-prepared kapok showed superhydrophobic characteristics with highwater contact for the formation of tannic acid and ferrous ion complex on kapok surface, which was confirmed by scanningelectron microscopy observation and infrared spectroscopy and X-ray diffraction analysis. The preparation process of themodified kapok fiber was optimized. When the sodium chlorite pretreated kapok fiber was firstly treated with 4.25 g/l tannicacid and subsequently immersed in 4.25 g/l tannic acid and 6.25 g/l ferrous sulfate mixture at 60 °C for 15 min, the aspreparedkapok fiber presented the best oil absorption capacity and hydrophobicity (water contact angle 150.7 °). The treatedkapok had good adsorption capacity for oils and organic solvents, 48.2, 41.6, 53.4, 52.8, 49.2, 41.2 g/g for vegetable oil,diesel oil, silicone oil, carbon tetrachloride, DMF and n-hexane, respectively. In addition, the tannic acid and ferrous sulfatetreated kapok was recycled for six times through simple mechanical squeezing, and showed good oil-water separationperformance oil, indicating its potential application in the removal of spilled oil on water.

      • KCI등재

        Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al–Zn–Mg–Cu Alloy

        Kai Wen,Baiqing Xiong,Yongan Zhang,Zhihui Li,Xiwu Li,Shuhui Huang,Lizhen Yan,Hongwei Yan,Hongwei Liu 대한금속·재료학회 2018 METALS AND MATERIALS International Vol.24 No.3

        In the present work, the infl uence of various retrogression treatments on hardness, electrical conductivity and mechanicalproperties of a high Zn-containing Al–Zn–Mg–Cu alloy is investigated and several retrogression regimes subjected to a samestrength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy(TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, thedistributions of precipitate size and nearest inter-precipitate distance are extracted from bright-fi eld TEM images projectedalong ⟨110⟩ Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zonesand η′ precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with theretrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained arequite the same and the average distance of nearest inter-precipitates show a slight increase. The infl uence of precipitates onmechanical properties is discussed through the interaction relationship between precipitates and dislocations.

      • KCI등재

        The deubiquitinating enzyme STAMBP is a newly discovered driver of triple-negative breast cancer progression that maintains RAI14 protein stability

        Yang Qianqian,Yan Ding,Zou Chaoying,Xue Qian,Lin Shuhui,Huang Qingtian,Li Xiaofen,Tang Daolin,Chen Xin,Liu Jinbao 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Triple-negative breast cancer (TNBC) is a heterogeneous malignancy in women. It is associated with poor prognosis, aggressive malignant behavior, and limited treatment options. In the ubiquitin‒proteasome system (UPS), deubiquitinases (DUBs) are potential therapeutic targets for various tumors. In this study, by performing unbiased siRNA screening, we identified STAMBP, a JAMM metalloprotease in the DUB family, as a driver of human TNBC tumor growth. Functionally, the knockdown of STAMBP inhibited the proliferation, migration, and invasion of multiple TNBC cell lines. Immunoprecipitation–mass spectrometry combined with functional and morphological analysis verified the interaction between STAMBP and the actin-binding protein RAI14. Mechanistically, STAMBP stabilized the RAI14 protein by suppressing the K48-linked ubiquitination of RAI14 and thus prevented its proteasomal degradation. Therefore, knocking down STAMBP resulted in the reduction in RAI14 protein levels and suppression of tumor growth in vitro and in vivo. Importantly, high levels of STAMBP were correlated with poor prognosis in TNBC patients. In summary, we reveal a previously unrecognized DUB pathway that promotes TNBC progression and provides a rationale for potential therapeutic interventions for the treatment of TNBC.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼