RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Graphitization of graphene oxide films under pressure

        Chen, Xianjue,Deng, Xiaomei,Kim, Na Yeon,Wang, Yu,Huang, Yuan,Peng, Li,Huang, Ming,Zhang, Xu,Chen, Xiong,Luo, Da,Wang, Bin,Wu, Xiaozhong,Ma, Yufei,Lee, Zonghoon,Ruoff, Rodney S. Elsevier 2018 Carbon Vol.132 No.-

        <P><B>Abstract</B></P> <P>Lightweight, flexible graphite foils that are chemically inert, high-temperature resistant, and highly electrically and thermally conductive can be used as component materials in numerous applications. “Graphenic” foils can be prepared by thermally transforming graphene oxide films. For this transformation, it is desirable to maintain a densely packed film structure at high heating rates as well as to lower the graphitizing temperatures. In this work, we discuss the pressure-assisted thermal decomposition of graphene oxide films by hot pressing at different temperatures (<I>i.e.</I>, 300 °C, 1000 °C, or 2000 °C). The films pressed at 1000 °C or 2000 °C were subsequently heated at 2750 °C to achieve a higher degree of graphitization. The combination of heating and pressing promotes the simultaneous thermal decomposition and graphitic transformation of G-O films. Films pressed at 2000 °C as well as films further graphitized at 2750 °C show high chemical purity, uniformity, and retain their flexibility. For films pressed at 2000 °C and then further heated at 2750 °C, the mechanical performances outperform the reported values of the “graphite” foils prepared by calendering exfoliated graphite flakes; the electrical conductivity is ∼3.1 × 10<SUP>5</SUP> S/m and the in-plane thermal conductivity is ∼1.2 × 10<SUP>3</SUP> W/(m·K).</P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Comparisons in phytochemical components and in vitro digestion properties of corresponding peels, flesh and seeds separated from two blueberry cultivars

        Mei-Jia Li,Yuan-Yuan Deng,Li-Hua Pan,Shui-Zhong Luo,Zhizheng Jiang 한국식품과학회 2024 Food Science and Biotechnology Vol.33 No.1

        Highbush blueberries (HB) and rabbiteye blueberries (RB) were separated into peels, flesh, and seeds to assess the compositions of nutriment, anthocyanins, soluble sugars and fatty acids, and the in vitro digesting abilities. Total phenolics contents (TPC) of 51–56 mg GAE/g DW were found in blueberry peels. Compared with HB peels, RB peels showed much higher TPC, but only contained 35 phenolics and lacked peonidin-3-O-rutinoside. Glucose, fructose, and sucrose were all present in HB and RB, but RB flesh had a higher acid-sugar ratio. Unsaturated fatty acid concentrations in HB and RB seeds were comparable (26.65 and 26.43 mg/g, respectively). However, HB seeds have 35 fatty acids, but RB seeds lacked cis-4,7,10,13,16,19-docosahexaenoic acid and cis-10-pentadecenoic acid. The in vitro digestion test showed that the whole fruit/peels/flesh of RB had a higher recovery and bioavailability index of phenolics and anthocyanins. Therefore, the reuse of blueberry pomace needs to be emphasized.

      • Design and Implementation on Spatial Science and Technology Information Database of CSI

        Chen, Xiu Wan,Deng, Zheng Quan,Lu, Zhi Gao,Ma, Jia,Lin, Jia Yuan,Zhang, Wen Jiang,Luo, Tianfu,Liu, Baofu 대한원격탐사학회 2000 International Symposium on Remote Sensing Vol.16 No.1

        Remote Sensing technology, which is characterized by producing imagery an multi-platform, different temporal and spatial resolution, has greatly improved mankind's capability of acquisition, processing and application of spatial information. The increase of spatial data sources and the development, applications and industrialization of spatial information technology are urging the need of spatial data sharing and exchanging. Based an a brief introduction an the China Spatial Information Network (CSI) and its database system, the CSI Spatial Science and Technology Information Database (SSTID) management system was designed and implemented in this paper.

      • KCI등재

        3-D Deformation Behavior Simulation of Cable Stitch Based on Particle System in Weft Knitted Fabrics

        Sha Sha,Lei Luo,Zhongmin Deng,Dapeng Yuan,Bin Li,Xuewei Jiang,Hui Tao,Qufu Wei 한국섬유공학회 2018 Fibers and polymers Vol.19 No.9

        The static simulation of weft knitting can be efficiently realized by graphics simulation techniques, but there still remains a challenge for mechanical models. The lack of practical mechanical models significantly limit the realistic deformation behaviors of complex cable stitches, which lead to a great different between the simulation effect and the actual fabric. In order to obtain the deformation behavior and volumetric performance of cable stitch, loop models were built based on an improved particle system in this work. Compared with plain weft knitted, the offset value of bonding points of cable stitches were measured. By analyzing the relationship between the deformation of loops and the displacement of the particles, the deformation behavior of cable stitch was simulated. Velocity-Verlet integration was introduced to simulate cable stitches and the stable results were obtained. The results show that these models and algorithm displayed the accurate deformation behavior of cable stitches, as demonstrated by qualitative comparisons to measure the deformations of actual samples.

      • KCI등재

        A Novel Human BTB-kelch Protein KLHL31, Strongly Expressed in Muscle and Heart, Inhibits Transcriptional Activities of TRE and SRE

        Weishi Yu,Yuequn Wang,Yongqing Li,Yun Deng,Zequn Wang,Wuzhou Yuan,Dali Li,Chuanbing Zhu,Xueying Zhao,Xiaoyang Mo,Wen Huang,Na Luo,Yan Yan,Karen Ocorr,Rolf Bodmer,Xiushan Wu 한국분자세포생물학회 2008 Molecules and cells Vol.26 No.5

        The Bric-a-brac, Tramtrack, Broad-complex (BTB) domain is a protein-protein interaction domain that is found in many zinc finger transcription factors. BTB containing proteins play important roles in a variety of cellular functions including regulation of transcription, regulation of the cytoskeleton, protein ubiquitination, angiogenesis, and apoptosis. Here, we report the cloning and characterization of a novel human gene, KLHL31, from a human embryonic heart cDNA library. The cDNA of KLHL31 is 5743 bp long, encoding a protein product of 634 amino acids containing a BTB domain. The protein is highly conserved across different species. Western blot analysis indicates that the KLHL31 protein is abundantly expressed in both embryonic skeletal and heart tissue. In COS-7 cells, KLHL31 proteins are localized to both the nucleus and the cytoplasm. In primary cultures of nascent mouse cardiomyocytes, the majority of endogenous KLHL31 proteins are localized to the cytoplasm. KLHL31 acts as a transcription repressor when fused to GAL4 DNA-binding domain and deletion analysis indicates that the BTB domain is the main region responsible for this repression. Overexpression of KLHL31 in COS-7 cells inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). KLHL31 also significantly reduces JNK activation leading to decreased phosphorylation and protein levels of the JNK target c-Jun in both COS-7 and Hela cells. These results suggest that KLHL31 protein may act as a new transcriptional repressor in MAPK/JNK signaling pathway to regulate cellular functions.

      • KCI등재

        Wnt/β-Catenin Promotes the Osteoblastic Potential of BMP9 Through Down-Regulating Cyp26b1 in Mesenchymal Stem Cells

        Yao Xin-Tong,Li Pei-pei,Liu Jiang,Yang Yuan-Yuan,Luo Zhen-Ling,Jiang Hai-Tao,He Wen-Ge,Luo Hong-Hong,Deng Yi-Xuan,He Bai-Cheng 한국조직공학과 재생의학회 2023 조직공학과 재생의학 Vol.20 No.5

        BACKGROUND: All-trans retinoic acid (ATRA) promotes the osteogenic differentiation induced by bone morphogenetic protein 9 (BMP9), but the intrinsic relationship between BMP9 and ATRA keeps unknown. Herein, we investigated the effect of Cyp26b1, a critical enzyme of ATRA degradation, on the BMP9-induced osteogenic differentiation in mesenchymal stem cells (MSCs), and unveiled possible mechanism through which BMP9 regulates the expression of Cyp26b1. METHODS: ATRA content was detected with ELISA and HPLC–MS/MS. PCR, Western blot, and histochemical staining were used to assay the osteogenic markers. Fetal limbs culture, cranial defect repair model, and micro–computed tomographic were used to evaluate the quality of bone formation. IP and ChIP assay were used to explore possible mechanism. RESULTS: We found that the protein level of Cyp26b1 was increased with age, whereas the ATRA content decreased. The osteogenic markers induced by BMP9 were increased by inhibiting or silencing Cyp26b1 but reduced by exogenous Cyp26b1. The BMP9-induced bone formation was enhanced by inhibiting Cyp26b1. The cranial defect repair was promoted by BMP9, which was strengthened by silencing Cyp26b1 and reduced by exogenous Cyp26b1. Mechanically, Cyp26b1 was reduced by BMP9, which was enhanced by activating Wnt/b-catenin, and reduced by inhibiting this pathway. b-catenin interacts with Smad1/5/9, and both were recruited at the promoter of Cyp26b1. CONCLUSIONS: Our findings suggested the BMP9-induced osteoblastic differentiation was mediated by activating retinoic acid signalling, viadown-regulating Cyp26b1. Meanwhile, Cyp26b1 may be a novel potential therapeutic target for the treatment of bone-related diseases or accelerating bone-tissue engineering.

      • SCIESCOPUSKCI등재

        The Effect of Transformation on the Virulence of Streptococcus pneumoniae

        Zhang Xue-Mei,Yin Yi-Bing,Zhu Dan,Chen Bao-De,Luo Jin-Yong,Deng Vi-Ping,Liu Ming-Fang,Chen Shu-Hui,Meng Jiang-Ping,Lan Kai,Huang Yuan-Shuai,Kang Ge-Fei The Microbiological Society of Korea 2005 The journal of microbiology Vol.43 No.4

        Although pneumococcus is one of the most frequently encountered opportunistic pathogen in the world, the mechanisms responsible for its infectiveness have not yet been fully understood. In this paper, we have attempted to characterize the effects of pneumococcal transformation on the pathogenesis of the organism. We constructed three transformation-deficient pneumococcal strains, which were designated as Nos. 1d, 2d, and 22d. The construction of these altered strains was achieved via the insertion of the inactivated gene, comE, to strains 1, 2 and 22. We then conducted a comparison between the virulence of the transformation-deficient strains and that of the wild-type strains, via an evaluation of the ability of each strain to adhere to endothelial cells, and also assessed psaA mRNA expression, and the survival of hosts after bacterial challenge. Compared to what was observed with the wild-type strains, our results indicated that the ability of all of the transformation-deficient strains to adhere to the ECV304 cells had been significantly reduced (p < 0.05), the expression of psaA mRNA was reduced significantly (p < 0.05) in strains 2d and 22d, and the median survival time of mice infected with strains Id and 2d was increased significantly after intraperitoneal bacterial challenge (p < 0.05). The results of our study also clearly indicated that transformation exerts significant effects on the virulence characteristics of S. pneumoniae, although the degree to which this effect is noted appears to depend primarily on the genetic background of the bacteria.

      • KCI등재

        Elevated FBXL6 expression in hepatocytes activates VRK2-transketolase-ROS-mTOR-mediated immune evasion and liver cancer metastasis in mice

        Zhang Jie,Lin Xiao-Tong,Yu Hong-Qiang,Fang Lei,Wu Di,Luo Yuan-Deng,Zhang Yu-Jun,Xie Chuan-Ming 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Metastatic hepatocellular carcinoma (HCC) is the most lethal malignancy and lacks effective treatment. FBXL6 is overexpressed in human hepatocellular carcinoma (HCC), but whether this change drives liver tumorigenesis and lung metastasis in vivo remains unknown. In this study, we aimed to identify FBXL6 (F-Box and Leucine Rich Repeat Protein 6) as a key driver of HCC metastasis and to provide a new paradigm for HCC therapy. We found that elevated FBXL6 expression in hepatocytes drove HCC lung metastasis and was a much stronger driver than Kras mutation (KrasG12D/+;Alb-Cre), p53 haploinsufficiency (p53+/-) or Tsc1 loss (Tsc1fl/fl;Alb-Cre). Mechanistically, VRK2 promoted Thr287 phosphorylation of TKT and then recruited FBXL6 to promote TKT ubiquitination and activation. Activated TKT further increased PD-L1 and VRK2 expression via the ROS-mTOR axis, leading to immune evasion and HCC metastasis. Targeting or knockdown of TKT significantly blocked FBXL6-driven immune evasion and HCC metastasis in vitro and in vivo. Notably, the level of active TKT (p-Thr287 TKT) was increased and was positively correlated with the FBXL6 and VRK2 expression levels in HCC patients. Our work provides novel mechanistic insights into FBXL6-driven HCC metastasis and suggests that targeting the TKT-ROS-mTOR-PD-L1/VRK2 axis is a new paradigm for treating patients with metastatic HCC with high FBXL6 expression.

      • KCI등재

        Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modifi cation, drug combination, and micro- or nano- delivery system

        Qi-rui Hu,Huan Hong,Zhi-hong Zhang,Hua Feng,Ting Luo,Jing Li,Ze-yuan Deng,Fang Chen 고려인삼학회 2023 Journal of Ginseng Research Vol.47 No.6

        Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The mainpharmacologically active components of ginseng are the dammarane-type ginsenosides, which havebeen shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolicregulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed intonutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability incells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosidesare responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosideshas become a pressing issue. Here, based on the structures of ginsenosides, we summarized theunderstanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods toenhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailabilityof ginsenosides.

      • SCIESCOPUSKCI등재

        The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo.

        Qi-rui Hu,Yao Pan,Han-cheng Wu,Zhen-zhen Dai,Qing-xin Huang,Ting Luo,Jing Li,Ze-yuan Deng,Fang Chen The Korean Society of Ginseng 2023 Journal of Ginseng Research Vol.47 No.2

        Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼