RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Bioactivity kinetics of organic matter biodegradation and nitrification

        Jianhui Wang,Lu Wang,Enyan Cui,Hai Lu 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.6

        Biodegradation of organic matter and nitrification of ammonia nitrogen was studied by measuring the electron transport system (ETS) activity in activated sludge. The feasibility of characterizing the bioactivity of activated sludge based on the ETS was discussed. Then, bioactivity kinetics for the biodegradation and nitrification of organic matter was analyzed using the Michaelis–Menten equation. The results indicated that the ETS activity of activated sludge reflects the progression of organic matter biodegradation and nitrification of ammonia nitrogen; moreover, ETS activity is sensitive to the loading of organic matter and ammonia nitrogen and also to changes in alkalinity during the reaction. Therefore, it is feasible to characterize the bioactivity of an activated sludge system with ETS activity. The Michaelis constant for organic matter biodegradation was KTs=368.9mg/L; UTm=90.9mgTF/(gTss·h); KIs=88.42mg/L; and UIm=277.8mgINTF/(gTss·h); for the nitrification of ammonia nitrogen, the Michaelis constant was KTs=16.89 mg/L; UTm=34.6mgTF/(gTss·h); KIs=6.0mg/L; and UIm=196.08mgINTF/(gTss·h). Additional analyses of bioactivity kinetics confirmed that the organic matter oxidation rate of heterotrophic bacteria was higher than that of autotrophic nitrifying bacteria.

      • KCI등재

        An Adaptive Neural Sliding Mode Control with ESO for Uncertain Nonlinear Systems

        Jianhui Wang,Peisen Zhu,Biaotao He,Guiyang Deng,Chunliang Zhang,Xing Huang 제어·로봇·시스템학회 2021 International Journal of Control, Automation, and Vol.19 No.2

        An adaptive neural sliding mode control with ESO for uncertain nonlinear systems is proposed to improve the stability of the control system. Any control system inevitably exists uncertain disturbances and nonlinearities which severely affect the control performance and stability. Neural network can be utilized to approximate the uncertain nonlinearities. Nevertheless, it produces approximate errors, which will become more difficult to deal with as the order of the system increases. Moreover, these errors and uncertain disturbances will result in a consequence that the control system can be unable to converge quickly, and has to deal with a lot of calculations. Therefore, in order to perfect the performance and stability of the control system, this paper combines sliding mode control and ESO, and designs an adaptive neural control method. The simulation results illustrate that the improved system has superior tracking performance and anti-interference ability.

      • KCI등재

        Kinetics of pentachlorophenol co-metabolism removal by micro-aeration sequencing batch reactor process

        Jianhui Wang,Guolong Xie,Xin Qi,Ruifeng Ming,Bin Zhang,Hai Lu 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.6

        Four carbon sources (including trehalose, glucose, acetic acid, and yeast extract) were used as the co-metabolicmatrix of pentachlorophenol (PCP). The effect of the carbon sources on the process of acclimatization and degradationof PCP was investigated. The acclimatization rate of carbon sources with different substrates, the activities ofmicrobial enzymes in the co-metabolism process, and the control of co-metabolism reaction conditions were evaluated. The kinetic model of co-metabolic degradation of PCP in micro aerated sequencing batch reactor (SBR) wasestablished based on the Monod equation. The model was applied to fit the operating conditions of the micro aeratedSBR process in this study. The experimental results showed that the type and concentration of metabolic matrix greatlyinfluenced the degradation rate of PCP, and its trehalose, glucose, and acetic acid enhanced the degradation of PCP. Inparticular, the strengthening effect of trehalose was pronounced. When trehalose was used as a co-metabolic carbonsource, the time required for PCP degradation to a predetermined degree was shortened to one-fifth of the original,PCP removal rate exceeded 95%. At the same time, yeast extract inhibited the biodegradation of PCP when it was usedas an additional matrix carbon source. After the co-metabolism carbon source was added to the system, the proliferationrate of the microorganism was increased, and the key enzymes of PCP degradation were induced in the system. When the co-metabolic carbon source concentration was high, it accelerated active enzymes’ induction and maintainedhigh activity; 2,3,5-triphenyltetrazolium chloride-electron transport system (TTC-ETS) activity reached about 7.6mgTF/(gTSS·H), and 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl Tetrazolium chloride-electron transport system(INT-ETS) activity reached 63.5mgINTF/(gTSS·H). When the concentration of co-metabolism carbon source wasextremely high, the co-degradation of toxic organic compounds was inhibited, leading to a decrease in the co-degradationrate. The kinetic model optimized the co-metabolism substrate. The degradation rate of PCP was increased by54.9% by micro-aeration-co-metabolism. The kinetic model was used to fit the microaerobic reaction process of microaeration SBR. The relevant result was in agreement with the experimental result by 97.6%.

      • KCI등재

        Tunable stability of oil-containing foam systems with different concentrations of SDS and hydrophobic silica nanoparticles

        Shuangqing Sun,Yan Wang,Congtai Yuan,Hongbing Wang,Wendong Wang,Jianhui Luo,Chunling Li,Songqing Hu 한국공업화학회 2020 Journal of Industrial and Engineering Chemistry Vol.82 No.-

        Experiment and molecular dynamics simulation were carried out to study the tunable stability of oilcontainingSDS-stabilized Nitrogen-in-water foam. The experimental results show that the foam stabilitycould be tuned by the concentrations of SDS and modified SiO2 nanoparticles. In the foam systems with alow SDS concentration (0.2 wt.%), the foams show poor stability and the foam stability was almost notaffected by the addition of modified SiO2 nanoparticles. The foam stability was greatly improved atmoderate SDS concentration (0.5 wt.%), it enhancedfirst and then weakened with the increase ofmodified SiO2 concentration, and the half-life time achieved a maximum value of 1292 s at 0.05 wt.%modified SiO2. However, at high SDS concentration (0.8 wt.%), the foam stability was pretty good exceptfor when the modified SiO2 concentration is too high (>0.2 wt.%). The microscopic mechanism wasobtained by investigating the structural and dynamic properties of the foamfilm. The simulation workshowed consistent results of foam stability with the experimental results. Moreover, it also revealed thatthe concentration and configuration of SDS will affect its interaction with SiO2 and oil molecule, which iscritical to foam stability.

      • KCI등재

        Long Noncoding RNA Expression Profiling During the Neuronal Differentiation of Glial Precursor Cells from Rat Dorsal Root Ganglia

        Yunfei Dai,Wei Ma,Tong Zhang,Jinwei Yang,Chenghao Zang,Kuangpin Liu,Xianbin Wang,Jiawei Wang,Zhen Wu,Xingkui Zhang,Chunyan Li,Junjun Li,Xiangpeng Wang,Jianhui Guo,Liyan Li 한국생물공학회 2020 Biotechnology and Bioprocess Engineering Vol.25 No.3

        Long noncoding RNAs (lncRNAs) play important roles in the process of cell fate determination. However, their function and expression profiles have not yet been systematically investigated during the transdifferentiation of glial precursor cells derived from dorsal root ganglia (DRG) in the peripheral nervous system. Our results demonstrated significant differences in gene architecture and expression among the three transcript types (lncRNA, mRNA, and TUCP). Distinct differences in transcript length, exon number, and ORF length were identified between lncRNAs and mRNAs after comparative analysis of their structure and sequence conservation. We found that the upregulated lncRNAs outnumbered the downregulated lncRNAs in glial precursor cells cultured with proBDNF antiserum compared with the levels in glial precursor cells cultured without proBDNF antiserum. By a series of GO and KEGG analyses, we found that the effects of some lncRNAs on their target genes in cis were related to nerve growth factor-induced cell cycle, cell phenotype change, and neuronal differentiation. The qRT-PCR verification results of lncRNAs ENSRNOT00000091991, ENSRNOT00000087717, and LNC_000429 were mostly consistent with the sequencing results. The candidate lncRNAs may be associated with the neuronal transdifferentiation of glial precursor cells. Our study provides the first evidence for a remarkably diverse pattern of lncRNA expression during neuronal differentiation of glial precursor cells from rat DRG, and also provides a resource for lncRNA studies in the field of cell differentiation.

      • KCI등재

        Collision-Free Adaptive Control for UAV Formation with Input Saturation and Communication Delays

        Jianhui Lu,Fan Luo,Zhong Zheng,Mingxin Hou,Lin Wang 한국항공우주학회 2022 International Journal of Aeronautical and Space Sc Vol.23 No.3

        This paper addresses the collision-free adaptive formation control problem for multiple unmanned aerial vehicles subject to input saturation and communication delays. First, a novel collision-free adaptive saturated control scheme is proposed using potential function and anti-windup compensator approaches. It shows that the velocity consensus and collision avoidance are realized when the directed communication topology is strongly connected. Second, the collision-free adaptive saturated control algorithm is proposed considering communication delays and collision avoidance, and it enables the asymptotic stability of the closed-loop system when the time-varying communication delays are decreasing to zero eventually. Finally, numerical simulations demonstrate that the proposed control approaches are effective, while the objectives of collision avoidance and velocity consensus are fulfilled.

      • KCI등재

        Expression of FMD Virus-like particles in yeast Hansenula polymorpha and immunogenicity of combine with CpG and Alumimun adjuvant

        Jianhui Zhang,Jun Ge,Juyin Li,Jianqiang Li,Yong Zhang,Yinghui Shi,Jiaojiao Sun,Qiongjin Wang,Xiaobo Zhang,Xing-xu Zhao 대한수의학회 2023 Journal of Veterinary Science Vol.24 No.1

        Background: Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural viruses and are replication- and infection-incompetent. Objectives: The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of recombinant VLPs as an FMD vaccine was evaluated. Methods: BALB/c mice were immunized with recombinant purified VLPs using CpG oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, enzyme-linked immunospot assay, and flow cytometry. Results: The VLPs of FMD were purified successfully from yeast protein with a diameter of approximately 25 nm. The immunization of mice showed that animals produced high levels of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher levels of interferon-γ and CD4+ T cells were observed in mice immunized with VLPs. Conclusions: The expression of VLPs of FMD in H. polymorpha provides a novel strategy for the generation of the FMDV vaccine.

      • KCI등재

        Loss of Torque on Magnetic Fluid Seals with Rotating-shafts

        Jianhui Hu,Meng Zhao,Lu Wang,Jibin Zou,Yong Li 한국자기학회 2017 Journal of Magnetics Vol.22 No.2

        The effects of loss of torque on magnetic fluid seals with rotating-shafts and the general difficulty of studying magnetic fluid seals are the focus of this work. The mechanism underlying loss of torque on such seals is analyzed using theoretical methods that show that loss of torque can be affected by several factors, including the velocity of the rotating-shaft, the structure of the sealing device, the characteristics of the magnetic field, and the characteristics of the magnetic fluid. In this paper, a model of the loss of torque is established, and the results of finite element analysis and testing and simulations are analyzed. It is concluded that (ⅰ) the viscosity of the magnetic fluid increased with the intensity of the magnetic field within a certain range; (ⅱ) when the magnetic fluid was saturated, the increase in loss of torque tended to gradually slow down; and (ⅲ) although the axial active length of the magnetic fluid may decrease with increasing speed of the rotating-shaft, the loss of torque increased because of increasing friction.

      • KCI등재

        Equivalent and identification of integrated coupling parameter of variable speed constant frequency brushless doubly fed generator

        Yiding Wang,Jianhui Su,Jidong Lai,Bao Xie,Yong Shi,Hongru Yu 전력전자학회 2022 JOURNAL OF POWER ELECTRONICS Vol.22 No.1

        Brushless doubly fed generator (BDFG) generally adopts double closed-loop vector control strategies. Owing to the influence of BDFG coupling parameters, the accuracy of feedforward decoupling parameters is very important; however, the complexity of the BDFG model makes its winding parameters difficult to identify. On the basis of the characteristics of the BDFG system control model and the decoupling control conditions, this study proposes a method for identifying the integrated coupling parameter. This method first uses particle swarm optimization to identify the coefficients of the current closed-loop transfer function. Then, the values of the integrated coupling parameters are calculated on the basis of the relationship between the coefficients of the current closed-loop transfer function and the integrated coupling parameters of the BDFG. This method bypasses the challenge of directly identifying BDFG winding parameters and can be used directly to design the controller. Experiments are performed using a 30 kW BDFG platform to prove the feasibility and effectiveness of the proposed method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼