RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption

        Yang, Yankang,Qiu, Beibei,Chen, Shanshan,Zhou, Qiuju,Peng, Ying,Zhang, Zhi-Guo,Yao, Jia,Luo, Zhenghui,Chen, Xiaofeng,Xue, Lingwei,Feng, Liuliu,Yang, Changduk,Li, Yongfang The Royal Society of Chemistry 2018 Journal of materials chemistry. A, Materials for e Vol.6 No.20

        <P>Solution-processed organic solar cells (OSCs) have been attracting more and more attention for a series of well-known advantages, and power conversion efficiencies (PCEs) of over 11% have been reported. However, the highest PCE of the OSCs based on small molecule donor/polymer acceptor blends is only 4.82%, which was much lower than those of other types of OSCs due to weak absorption of the polymer acceptor and the unbalanced charge carrier mobility of the small molecule donor and the polymer acceptor. Here, we fabricated small molecule donor/polymer acceptor-based OSCs using the wide bandgap SM1 and DR3TBDTT as the small molecular donor and the low-bandgap n-type conjugated polymer PZ1 as the polymer acceptor. With the treatment of a solvent additive, which can promote the absorption intensity, enhance the carrier mobility and suppress the charge carrier recombination, the SM1-based devices and the DR3TBDTT-based devices show PCEs of 3.97% and 5.86%, respectively. It is worth mentioning that the PCE of 5.86% is the state-of-the-art efficiency for OSCs based on the small molecular donor/polymer acceptor system.</P>

      • KCI등재

        Enhancer-Gene Interaction Analyses Identified the Epidermal Growth Factor Receptor as a Susceptibility Gene for Type 2 Diabetes Mellitus

        Yang Yang,Shi Yao,Jing-Miao Ding,Wei Chen,Yan Guo 대한당뇨병학회 2021 Diabetes and Metabolism Journal Vol.45 No.2

        Background: Genetic interactions are known to play an important role in the missing heritability problem for type 2 diabetes mellitus (T2DM). Interactions between enhancers and their target genes play important roles in gene regulation and disease pathogenesis. In the present study, we aimed to identify genetic interactions between enhancers and their target genes associated with T2DM. Methods: We performed genetic interaction analyses of enhancers and protein-coding genes for T2DM in 2,696 T2DM patients and 3,548 controls of European ancestry. A linear regression model was used to identify single nucleotide polymorphism (SNP) pairs that could affect the expression of the protein-coding genes. Differential expression analyses were used to identify differentially expressed susceptibility genes in diabetic and nondiabetic subjects. Results: We identified one SNP pair, rs4947941×rs7785013, significantly associated with T2DM (combined P=4.84×10−10). The SNP rs4947941 was annotated as an enhancer, and rs7785013 was located in the epidermal growth factor receptor (EGFR) gene. This SNP pair was significantly associated with EGFR expression in the pancreas (P=0.033), and the minor allele “A” of rs7785013 decreased EGFR gene expression and the risk of T2DM with an increase in the dosage of “T” of rs4947941. EGFR expression was significantly upregulated in T2DM patients, which was consistent with the effect of rs4947941×rs7785013 on T2DM and EGFR expression. A functional validation study using the Mouse Genome Informatics (MGI) database showed that EGFR was associated with diabetes-relevant phenotypes. Conclusion: Genetic interaction analyses of enhancers and protein-coding genes suggested that EGFR may be a novel susceptibility gene for T2DM.

      • KCI등재

        Performance study of g-C3N4/carbon black/BiOBr@Ti3C2/MoS2 photocatalytic fuel cell for the synergistic degradation of different types of pollutants

        Guo Huilin,Yu Tingting,Zhao Lei,Qian Jun,Yu Jiahe,Zhang Yu,Teng Yongyue,Zhu Chunshui,Yang Tao,Chen Wenbin,Gong Picheng,Jiang Cuishuang,Gao Changfei,Yang Bing,Yang Chenyu 한국탄소학회 2023 Carbon Letters Vol.33 No.3

        In this study, a bipolar visible light responsive photocatalytic fuel cell (PFC) was constructed by loading a Z-scheme g-C3N4/carbon black/BiOBr and a Ti3C2/MoS2 Schottky heterojunction on the carbon brush to prepare the photoanode and photocathode, respectively. It greatly improved the electron transfer and achieved efficient degradation of organic pollutants such as antibiotics and dyes simultaneously in two chambers of the PFC system. The Z-scheme g-C3N4/carbon black/BiOBr formed by adding highly conductive carbon black to g-C3N4/BiOBr not only effectively separates the photogenerated carriers, but also simultaneously retains the high reduction of the conduction band of g-C3N4 and the high oxidation of the valence band of BiOBr, improving the photocatalytic performance. The exceptional performance of Ti3C2/MoS2 Schottky heterojunction originated from the superior electrical conductivity of Ti3C2 MXene, which facilitated the separation of photogenerated electron–hole pairs. Meanwhile, the synergistic effect of the two photoelectrodes further improved the photocatalytic performance of the PFC system, with degradation rates of 90.9% and 99.9% for 50 mg L−1 tetracycline hydrochloride (TCH) and 50 mg L−1 rhodamine-B (RhB), respectively, within 180 min. In addition, it was found that the PFC also exhibited excellent pollutant degradation rates under dark conditions (79.7%, TCH and 97.9%, RhB). This novel pollutant degradation system is expected to provide a new idea for efficient degradation of multiple pollutant simultaneously even in the dark.

      • Nitric Oxide Synthase 3 Gene Variants and Colorectal Cancer: a Meta-Analysis

        Chen, Yang,Li, Jie,Guo, Yun,Guo, Xiao-Yun Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.8

        Background: Colorectal cancer (CRC) is the worldwide disease which causes enormous losses every year. Recent studies suggested that environmental and gene factors might be the etiologies in increasing the risk of morbidity. Nitric oxide synthase 3 (NOS3) gene polymorphisms are said to be associated with CRC risk but the conclusion is still controversial. Materials and Methods: Pubmed and HuGENet databases up to December 2013 were used in this meta-analysis. Three different certain genotypic models were applied, namely dominant (AA+AC versus CC), recessive (AA versus AC+CC), per-allele analysis (A vs C). In addition, information on tumor sites and pathologic stages was collected. The strength of associations was assessed through combining odds ratio (OR) and 95% confidence interval (CI). Results: Finally, five and three studies about the rs1799983 and rs2070744 were covered in the analysis with 2,745 cases and 2,478 controls. Three models were applied, but no significant association was found for NOS3 G894T/rs1799983 (dominant: OR=0.999, 95%CI=0.797-1.253, $I^2$=63.8%; recessive: OR=0.924, 95%CI=0.589-1.450, $I^2$=59.3%; allele analysis: OR=0.979, 95%CI=0.788-1.216, $I^2$=74.9%) and T-786C/rs2070744 (dominant: OR=1.138, 95%CI=0.846-1.530, $I^2$=67.9%; recessive: OR=0.956, 95%CI=0.708-1.291, $I^2$=0.0%; allele analysis: OR=1.110, 95%CI=0.865-1.425, $I^2$=69.4%). The same results were also obtained for tumor sites and pathologic stage subgroups. After further analyzing the NOS3 gene, rs1799983 as the tag- and functional SNP was presented. Conclusions: On the basis of this meta-analysis and the characteristics of the NOS3 gene, we suggested rs1799983 might be a key locus associated with CRC risk. Further prospective studies were needed to make more comprehensive explanation of the associations.

      • KCI등재

        Dynamic Mechanical Performance of Self-compacting Concrete Containing Crumb Rubber under High Strain Rates

        Guo Yang,Xudong Chen,Shengshan Guo,Weihong Xuan 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.8

        The parameters of dynamic mechanical performance at high strain rates are of significant importance in the structural designs and numerical simulations. The aim of this paper is to study the strain rate sensitivity of self-compacting rubberized concrete (SCRC) in the dynamic compressive, splitting tensile and bending tests by using the split Hopkinson pressure bar (SHPB) technique. The failure modes, stress-strain curves and dynamic strength changes of SCRC under various loading conditions were also observed. The specific energy absorption, dynamic tensile-compressive strength ratios, and dynamic constitutive model of SCRC with different rubber content were also analyzed. The results indicate that SCRC can exhibit stronger strain rate sensitivity compared to SCC when strain rate is enough high, while the strain rate sensitivity of SCRC is lower than that of SCC at when strain rate is less than a critical value. To understand the strain rate sensitivity of SCRC, dynamic constitutive model (ZWT model) based on nonlinear viscoelastic theory was proposed. For impact toughness, although the specific energy absorption decreases with increasing rubber content, the ratios of tensile strength to compressive strength of SCRC have an increasing tendency when rubber content increases.

      • KCI등재

        Facile preparation and characterization of tough poly(vinyl alcohol) organohydrogels with low friction and self-cleaning properties

        Jia Yang,Jiajia Hao,Chen Tang,Yaxin Guo,Mingxin Guo,Zhipeng Li,Shuzheng Liu,Hui Yu,Gang Qin,Qiang Chen 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.116 No.-

        Although many hydrogels have been applied to wearable sensors, it is still challenging to simultaneouslyrealize hydrogels with optical transparency, superior mechanical properties, excellent sensing performance,and anti-freezing by using inexpensive raw materials and an easy preparation process. Herein,using ethylene glycol/H2O (EG/ H2O) as a solvent, poly(vinyl alcohol)/EG organohydrogel (PVA/EGOHG) was prepared by a simple heating and frozen-thawing method. Owing to the multifunctionalityof EG (i.e., physical cross-linker, anti-freezer and co-solvent), PVA/EG OHG demonstrated excellent integratedproperties, including high strength, high toughness, and anti-freezing performances. Besides, PVA/EG OHG also showed low friction, self-cleaning, and frost resistance properties. After the introduction ofLiCl, ionically conductive PVA/EG @LiCl organohydrogel was served as a self-cleaning strain sensor, whichcould be long-term stable to detect the motions of human under room and low temperatures. The studyprovides to further understanding of the organohydrogel, which will help us design next-generationhigh-performance organohydrogels.

      • KCI등재

        Efficient removal of methylene blue via two-step modification hazelnut shell biochar: Process intensification, kinetics and thermodynamics

        Fanhui Guo,Sixi Guo,Yanjie Niu,Guofeng Qiu,Yang Guo,Yan Li,Liqing Chen,Yixin Zhang,Jianjun Wu 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.125 No.-

        Porous carbon materials with ultra-high specific surface area and adjustable pore structure characteristicswere prepared from food industry waste hazelnut shells for the adsorption of methylene blue (MB)wastewater by two-step activation by impregnation with ZnCl2 followed by chemical activation withKOH. The Fusso effect, which can reduce the size of MB molecules, was further used to enhance theadsorption of MB on porous carbon. The results show that both HSBC-a and HSBC-a-b have ultra-highspecific surface area (2979.59 m2/g for HSBC-a, 2882.73 m2/g for HSBC-a-b). The mesopore ratio ofHSBC-a-b (Vmeso/Vtotal % = 14.05%) was doubled compared to HSBC-a. It showed an excellent adsorptionperformance of 694.03 mg/g for MB. It showed a fast adsorption kinetics and the adsorbed amountincreased to 882.46 mg/g at 0.1 M NaCl solution. In addition, adsorption processes were studied usingadsorption kinetics and adsorption isotherm model fitting. The results of this research confirm that hazelnutshell is a kind of promising and sustainable porous carbon raw material, and its ultra-high specificsurface area and adjustable pore structure characteristics are favorable for the efficient treatment ofMB from dyeing wastewater. This work could provide potential guidance for the high-value utilizationof waste hazelnut shell biochar.

      • SCIESCOPUSKCI등재
      • KCI등재

        Construction and Characterization of a Full-length cDNA Library and Identification of Genes Involved in Salinity Stress in Wild Eggplant (Solanum torvum Swartz)

        Gang Chen,Hua Wang,Jun-Yi Gai,Yue-Lin Zhu,Li-Fei Yang,Qian-Qian Liu,Gong-Chen Zhang,Guo-Hu Chen 한국원예학회 2012 Horticulture, Environment, and Biotechnology Vol.53 No.2

        The objectives of this paper were to construct a full-length cDNA library and to isolate genes that confer salt tolerance from the leaves of salinity-tolerant wild eggplant variety, ‘Torvum Vigor’ (Solanum torvum Swartz). A full-length cDNA library from the leaves was successfully constructed by a switching mechanism at 5’-end of RNA transcript (SMART) approach and a long-distance PCR (LD-PCR) technique. The titer of the primary cDNA library was 3.6 ×106 cfu・mL-1 and that of the amplified library was 1.2 × 1010 cfu・mL-1. Gel electrophoresis results showed that most of the cDNA inserts ranged from 0.40 to 2.5 kb, with a recombination rate of 99%. A total of 427 randomly selected positive clones were sequenced. After removing the unsuccessful reads, 364 datasets were obtained and have been submitted to the NCBI Nucleotide Sequence Database under GenBank accession numbers JK265131-JK265494. Among the 364 submitted sequences, 74.45% of them contained full-length coding regions. BLASTX analysis revealed that 62.36% of the ‘Torvum Vigor’ expressed sequence tags (ESTs) possessed homology to known or putative proteins of other organisms. Seven genes that might be responsible for the encoding of known proteins in other organisms were identified to confer salt tolerance. This evidence demonstrated that the cDNA library constructed was a full-length library of high quality. It could be a useful resource for further research in the cloning of stress-related genes, which could be utilized in the genetic improvement of vegetable crops using transgenic technology.

      • KCI등재

        Utilization of Completely Recycled Fine Aggregate for Preparation of Lightweight Concrete Partition Panels

        Yibo Yang,Baixi Chen,Weizhen Zeng,Yanjun Li,Qiaohui Chen,Wenying Guo,Hengchang Wang,Yingqin Chen 한국콘크리트학회 2021 International Journal of Concrete Structures and M Vol.15 No.5

        To reduce the cost of lightweight concrete (LWC) partition panels and to address recycling concrete waste, this work utilized completely recycled fine aggregate (CRFA) to replace the natural fine aggregate and ceramsite in the preparation of LWC and LWC partition panels. To this end, an autoclave-free curing process and an air-entraining agent were used to prepare the CRFA-LWC. The workability, compressive strength, drying shrinkage, and pore structure of the CRFA-LWC and the performance of the CRFA-LWC partition panels were then investigated. The results show that the optimal ratio of the CRFA to the cement is 2.2 for the lightweight concrete, and the optimal panel cross section is a rounded rectangular one. All the pores in the CRFA-LWC have a diameter of smaller than 0.17 mm, and the diameter of 89% of them is less than 0.05 mm. In order to satisfy the drying shrinkage requirements stipulated by Chinese code JC/T 169-2016, the CRFA-LWC should be cured for at least 10 days. The economic analysis concludes that the material cost of CRFA-LWC is 40% lower than that of the autoclaved ceramsite concrete. In addition, utilizing CRFA in lightweight concrete can ease the shortage of natural aggregate.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼