RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
          펼치기
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        콘크리트의 탄산화 관점에서 CO<sub>2</sub> 배출량-흡수량 평가에 관한 연구

        이상현,이성복,이한승,Lee, Sang-Hyun,Lee, Sung-Bok,Lee, Han-Seung 한국콘크리트학회 2009 콘크리트학회논문집 Vol.21 No.1

        콘크리트는 생산과정에서 다량의 이산화탄소를 배출하는 시멘트를 사용하기 때문에 반친환경적 재료로 인식되고 있다. 하지만 콘크리트는 사용기간 중 탄산화 과정을 통하여 대기중의 이산화탄소를 흡수한다. 이에 본 연구에서는 기존문헌 고찰을 통하여 1) 콘크리트 내 탄산화 가능한 물질의 농도, 2) 탄산화된 콘크리트의 체적, 3) 이산화탄소 분자량을 이용, 탄산화를 통한 콘크리트의 이산화탄소 흡수량의 정량적 산출 방법을 제시하였다. 또한 콘크리트 생산에 사용되는 재료들의 이산화탄소 배출량 자료를 이용하여 단위 콘크리트 생산에 따른 이산화탄소 배출량을 정량적으로 산출하였다. 이러한 콘크리트의 이산화탄소 흡수량 및 배출량의 정량적 산출방법을 이용하여 실제 사용중인 아파트 건축물 1동을 대상으로 하여 콘크리트의 생산에 따른 배출량과 사용기간에 따른 이산화탄소 흡수량을 정량적으로 산출하여 이산화탄소의 배출량-흡수량 평가를 실시하였다. 그 결과 건축물을 40, 60, 80년 사용시, 사용된 콘크리트의 이산화탄소 배출량 대 흡수량의 비율이 3.65, 4.47, 5.18%로 나타났다. 본 연구는 콘크리트 생산 및 사용에 따른 이산화탄소 배출량-흡수량의 정량적 산정방법에 연구의 목적을 두었으며 이산화탄소 배출량-흡수량 평가 결과 구조물을 80년 사용할 시 약 5.18%로 그 값이 미비하였으나 시멘트의 혼화재 치환율 증가를 통한 배출량 저감과 탄산화 체적 증가를 통한 이산화탄소 흡수량 증가를 통해 배출량-흡수량을 향상시킬 수 있으며, 향후 콘크리트의 이산화탄소 배출량-흡수량 평가에 본 연구의 방법이 유용하게 활용될 수 있을 것으로 판단된다. A concrete is considered unfriendly-environmental material because it uses cement which emits much $CO_2$ during producing process. However, a concrete absorbs $CO_2$ through carbonation process during service life. In this paper how much concrete absorbs $CO_2$ through carbonation was calculated using 1) concentration of carbonatable substances in concrete, 2) carbonated volume of concrete, 3) molecular weight of $CO_2$ based on references and the method was proposed. $CO_2$ emission from producing $1m^3$ concrete was calculated based on $CO_2$ emission datum of materials used in concrete. From using these methods that calculate $CO_2$ emission and absorption of concrete, assessment of $CO_2$ emission-absorption against a real apartment was conducted by subtracting absorption $CO_2$ according to service life from $CO_2$ emission in the process of making concrete. As a result, a ratio of absorption over emission of $CO_2$ through concrete carbonation according to service life 40, 60, 80 years was assessed about 3.65, 4.47, 5.18%. An objective of this study is to propose how to calculate emission - absorption of $CO_2$ from producing and using concrete. Although the result value, emission - absorption of $CO_2$, is 5.18% very low when the service life of an apartment is 80years, the value can be improved by reducing emission from using blended cement such as blast furnace slag or increasing replacement ratio of cement and increasing carbonated volume of concrete from expanding service life of a building. This study may be useful when $CO_2$ emission - absorption of concrete is evaluated in the further study.

      • KCI등재

        콘크리트 양생 강도 모니터링을 위한 매립형 지능형 센서의 적용성 연구

        박승희(Seung-Hee Park),김동진(Dong-Jin Kim),홍석인(Seok-Inn Hong),이창길(Chang-Gil Lee) 한국콘크리트학회 2011 콘크리트학회논문집 Vol.23 No.2

        이 논문은 고강도 콘크리트의 양생 강도 발현을 모니터링하기 위하여 콘크리트 내부에 매립이 가능한 지능형 센서를 제작하고 제작된 지능형 센서를 이용하여 콘크리트 내부의 유도 초음파 전달 시간을 측정함으로써, 콘크리트의 양생 강도를 실시간 추정할 수 있는 기법을 보여준다. 압전 소자를 콘크리트 내부에 삽입하는데 있어, 콘크리트의 수화열과 양생 시의 미세 변형으로부터 보호되어야 하므로, 방수 코팅과 모르타르 케이싱을 하였으며 이렇게 제작된 지능형 센서로부터 저비용의 셀프 센싱 기반 유도 초음파를 계측하여 콘크리트 내부의 유도 초음파 전달 시간을 모니터링하는 기법을 제안하였다. 콘크리트의 양생이 진행됨에 따라 콘크리트의 강도가 증가하게 되는데, 이는 즉 콘크리트의 탄성 계수가 증가하기 때문이며 이로 인해, 유도 초음파의 전달 시간이 빨라지는 것이므로, 이를 측정하여 콘크리트 양생 강도를 추정할 수 있게 된다. 제안된 기법의 적용가능성을 검증하기 위하여 설계 압축강도 100 MPa의 공시체 내부에 지능형 센서를 매립하고 양생기간 동안 유도 초음파를 측정, 비교 분석하였다. 유도 초음파 신호는 양생이 진행됨에 따라 더 빠르게 전달되었으며, 특히 강도 변화가 급격하게 일어나는 초기 재령에서의 유도 초음파 전달속도 변화가 가장 크게 나타났고 그 이후로 점차 감소하는 경향을 보여주었다. 또한, 유도 초음파 전달 시간과 강도 사이의 선형 상관관계를 이용하여 유도 초음파의 전달 시간을 이용해 발현강도를 추정하는 콘크리트 양생강도 추정식을 제안하였다. 결과적으로 이 연구를 통해 개발된 매립형 지능형 센서를 이용하여 고강도 콘크리트의 양생 강도를 실시간 모니터링할 수 있음이 검증되었다. In this study, a piezoelectric smart sensor that can be embedded inside of concrete structures is developed to investigate the early stage of concrete curing. A waterproof coating is used to protect the piezoelectric sensor from moistures of concrete mixture. Also, a mortar case is utilized to encapsulate the sensor to protect it from impact loads. To estimate the strength of concrete, a self-sense guided-wave actuated sensing technique is applied. In the guided wave, its velocity is varied according to the mechanical properties of concrete such as modulus of elasticity. Because modulus of elasticity directly affects the strength of concrete, the guidedwave"s velocity also affects the concrete strength development. To verify the feasibility of using the proposed approach, the smart sensor was embedded into a 100MPa concrete cylinder and the self-sense guided wave is continuously measured throughout the curing process. The measurements showed that the propagation time (TOF) of the measured guided waves gradually decreased as the curing age increased. Especially, at the early age of the curing process, the variation of the TOF was very significant. Furthermore, the results showed that there is a linear relationship between the TOF of the self-sense guided waves and the strength of concrete existed. It is safe to conclude that the proposed approach can be used very effectively in monitoring of the strength development of high strength concrete structures.

      • KCI등재

        콘크리트의 탄산화 관점에서 CO2 배출량-흡수량 평가에 관한 연구

        이상현(Sang-Hyun Lee),이성복(Sung-Bok Lee),이한승(Han-Seung Lee) 한국콘크리트학회 2009 콘크리트학회논문집 Vol.21 No.1

        콘크리트는 생산과정에서 다량의 이산화탄소를 배출하는 시멘트를 사용하기 때문에 반친환경적 재료로 인식되고 있다. 하지만 콘크리트는 사용기간 중 탄산화 과정을 통하여 대기중의 이산화탄소를 흡수한다. 이에 본 연구에서는 기존문헌 고찰을 통하여 1) 콘크리트 내 탄산화 가능한 물질의 농도, 2) 탄산화된 콘크리트의 체적, 3) 이산화탄소 분자량을 이용, 탄산화를 통한 콘크리트의 이산화탄소 흡수량의 정량적 산출 방법을 제시하였다. 또한 콘크리트 생산에 사용되는 재료들의 이산화탄소 배출량 자료를 이용하여 단위 콘크리트 생산에 따른 이산화탄소 배출량을 정량적으로 산출하였다. 이러한 콘크리트의 이산화탄소 흡수량 및 배출량의 정량적 산출방법을 이용하여 실제 사용중인 아파트 건축물 1동을 대상으로 하여 콘크리트의 생산에 따른 배출량과 사용기간에 따른 이산화탄소 흡수량을 정량적으로 산출하여 이산화탄소의 배출량-흡수량 평가를 실시하였다. 그 결과 건축물을 40, 60, 80년 사용시, 사용된 콘크리트의 이산화탄소 배출량 대 흡수량의 비율이 3.65, 4.47, 5.18%로 나타났다. 본 연구는 콘크리트 생산 및 사용에 따른 이산화탄소 배출량-흡수량의 정량적 산정방법에 연구의 목적을 두었으며 이산화탄소 배출량-흡수량 평가 결과 구조물을 80년 사용할 시 약 5.18%로 그 값이 미비하였으나 시멘트의 혼화재 치환율 증가를 통한 배출량 저감과 탄산화 체적 증가를 통한 이산화탄소 흡수량 증가를 통해 배출량-흡수량을 향상시킬 수 있으며, 향후 콘크리트의 이산화탄소 배출량-흡수량 평가에 본 연구의 방법이 유용하게 활용될 수 있을 것으로 판단된다. A concrete is considered unfriendly-environmental material because it uses cement which emits much CO2 during producing process. However, a concrete absorbs CO2 through carbonation process during service life. In this paper how much concrete absorbs CO2 through carbonation was calculated using 1) concentration of carbonatable substances in concrete, 2) carbonated volume of concrete, 3) molecular weight of CO2 based on references and the method was proposed. CO2 emission from producing 1m3 concrete was calculated based on CO2 emission datum of materials used in concrete. From using these methods that calculate CO2 emission and absorption of concrete, assessment of CO2 emission-absorption against a real apartment was conducted by subtracting absorption CO2 according to service life from CO2 emission in the process of making concrete. As a result, a ratio of absorption over emission of CO2 through concrete carbonation according to service life 40, 60, 80 years was assessed about 3.65, 4.47, 5.18%. An objective of this study is to propose how to calculate emission - absorption of CO2 from producing and using concrete. Although the result value, emission - absorption of CO2, is 5.18% very low when the service life of an apartment is 80years, the value can be improved by reducing emission from using blended cement such as blast furnace slag or increasing replacement ratio of cement and increasing carbonated volume of concrete from expanding service life of a building. This study may be useful when CO2 emission - absorption of concrete is evaluated in the further study.

      • KCI등재

        국내의 지역 및 계절에 따른 콘크리트 배합별 환경영향평가

        서은아(Eun-A Seo),양근혁(Keun-Hyeok Yang),정연백(Yeon-Back Jung) 한국콘크리트학회 2014 콘크리트학회논문집 Vol.26 No.3

        지역과 계절이 콘크리트의 전과정 환경영향에 미치는 효과를 정량적으로 평가하기위해 6331개의 레디믹스 콘크리트 배합을 분석하였다. 콘크리트의 환경영향은 국가 생애주기 데이터목록을 기반으로 산출한 환경부하 발생량을 분류화, 특성화, 정규화 및 가중치 단계를 거쳐 6가지 환경영향 범주(지구온난화, 자원고갈, 광화학산화물생성, 산성화, 부영향화, 인간독성)로 나타났다. 단위압축강도에서의 환경영향 지표를 평가하기 위해 콘크리트 압축강도로 무차원한 환경영향 지수로 정의하였다. 국내에서 가장 많이 사용되는 콘크리트의 압축강도(fck)는 24 MPa와 27 MPa이다. fck이 24 MPa일때 환경영향 지표가 가장 낮은 지역은 울산이었으며 가장 높은 지역은 광주와 대구였다. 지역에 따른 환경영향의 차이는 지역에 따라 사용되는 혼화재의 종류와 치환율이 다르기 때문이다. 또한 압축강도 24 MPa일때, 콘크리트의 환경영향지수는 동절기가 하절기 및 표준기에 비해 약 5% 높았다. 반면에 콘크리트의 환경영향 지수는 콘크리트 압축강도가 35 MPa을 넘어서면서 계절의 영향은 미미하였다. This study analyzed a comprehensive database including 6331 ready-mixed concrete plant mixtures to quantitatively assess the environmental impact of concrete under mixture proportions variable according to the domestic region and season. The environmental impact indicator includes global warming, photochemical oxidant creation, abiotic resource depletion, acidification, eutrophication and human toxicity, which are determined from categorization, characterization, normalization and weighting process based on Korea lifecycle inventories. The determined environmental impact indicator was also normalized by concrete compressive strength (fck), which is defined as impact index, to calculate the environmental impact per unit strength of 1 MPa. The most common compressive strength of concrete used in the country is estimated to be 24 MPa and 27 MPa. For fct of 24 MPa, the lowest environmental impact indicator is observed in Ulsan, whereas the highest region is Gwangju and Daegu. This difference according to domestic region is primarily resulted from by the replacement of different supplementary cementitious materials. Furthermore, the impact index of concrete with fck of 24 MPa is higher by approximately 5% at wintertime than at summertime and standard season. The impact index gradually decreases with the increase of fck up to 35 MPa, beyond which it remains constant.

      • 폴리머 콘크리트 오버레이의 수축응력에 관한 연구

        조영국,소양섭,Jo, Young-Kug,Soh, Yang-Seob 한국콘크리트학회 1997 콘크리트학회지 Vol.9 No.4

        폴리머 콘크리트를 오버레이 콘크리트로서 기존 시멘트 콘크리트 위에 타설할 경우 폴리머 콘크리트의 경화수축으로 말미암아 전단응력, 수직응력 및 축응력이 발생되며 이러한 응력은 폴리머 콘크리트와 기존 시멘트 콘크리트 사이의 접착성능에 영향을 미쳐 결국 역학적 성질 및 내구성이 저하될 수 있다. 오버레이 콘크리트의 수축응력은 본 실험에서 실시한 구속된 오버레이 콘크리트의 구속해제에 의한 수축변형량과 탄성계수로서 구할 수 있다. 본 연구에서는 폴리머 종류, 오버레이 콘크리트 두께, 양생시간과 온도에 따른 폴리머 콘크리트 및 폴리머 시멘트 콘크리트의 수축에 의한 축응력을 측정하여 폴리머 콘크리트를 각종 교량등의 오버레이 콘크리트로 사용하멩 있어서 기초적 자료를 제공하고자 하였다. 연구결과, 폴리머 콘크리트의 경화수축응력은 폴리머의 종류, 양생온도, 재령 및 두께에 의해 영향을 크게 받는 것으로 나타났다. The shrinkage of polymer concrete overlays to cement concrete causes interface shear, normal and axial stresses in the overlays. These can lead to deterioration of the polymer concrete overlays due to affection of adhesion polymer concrete and cement concrete. The shrinkage stress in the polymer concrete cause it to shorten and the shorting is measured: With the modulus of elasticity of the polymer concrete and strain known the stresses can be calculated. The purpose of this study is to provide the basic data of application of polymer concrete overlays such as bridge decks, highway and airport pavement repair and overlay materials. From the test results. It has been found that depending on the type polymer. overlay thickness, time after curing and temperature. the shrinkage stresses are eliminated by relaxation in time ranging from a few hours to a few days.

      • KCI등재

        강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정

        최현기(Hyun-Ki Choi),배백일(Baek-Il Bae),구해식(Hae-Shik Koo) 한국콘크리트학회 2015 콘크리트학회논문집 Vol.27 No.4

        본 연구는 섬유보강 콘크리트의 실무 적용을 위한 성능 평가에 대해 재료 시험으로 낭비되던 시간과 노력을 최소화하고 적용에 있어서의 이론적인 배경을 확보하기 위해, 기존의 가이드라인 및 시험 기준에 따른 실험 결과의 수집과 통계적 분석을 통한, 콘크리트의 압축강도에 기반한 주요 특성들을 특정하기 위해 수행되었다. 섬유보강콘크리트는 다양한 변수에 영향을 받게 되므로 이론적인 접근이 어려운 측면이 있어 본 연구에서는 현재 실무에서 다방면으로 사용되고 있는 100MPa 이하의 압축강도를 가지는 콘크리트를 중심으로 0.25%에서 2% 사이의 강섬유 혼입량에 대한 압축강도와 인장강도 시험을 수행하였다. 인장강도 시험은 표준기관에서 정하고 있는 시험방법인 쪼갬인장강도와 휨인장강도에 대해 수행하였다. 섬유보강콘크리트의 재료시험 결과 쪼갬인장강도와 휨인장강도 모두 압축강도의 증가에 따라 증가하는 추세를 보였으며 강도의 증진률은 압축강도 증가와 함께 감소하는 추세를 보였다. 또한섬유의 혼입량 증가는 인장강도의 증가를 유발하는 것을 확인할 수 있었으며, 압축강도 증가에 따른 인장강도 증진률 감소를 막아 콘크리트 압축강도 증가에 선형적으로 인장강도가 증가하도록 해주는 것을 확인할 수 있었다. 기존 연구들로부터 구축한 데이터베이스를 통한 섬유보강콘크리트의 기계적 성질에 대한 검토를 수행하였다. 다양한 변수에 따른 인장강도의 추정을 위해 인공신경망을 적용하였다. 인공신경망은 multi layer perceptron으로 구성하였으며 전달함수로는 sigmoid 함수를 사용하였고 역전파 알고리즘을 통해 학습을 수행하였다. 인공신경망을 사용한 콘크리트 인장강도의 추정 결과 시험 결과와 추정결과가 유사하게 나타나는 것을 확인할 수 있었다. 인공신경망에서 결합력이 큰 변수들은 물-시멘트비와 섬유의 혼입량으로 나타났으며 섬유보강콘크리트의 인장강도는 물-시멘트비에 영향을 받는 압축강도와 혼입량을 통해 추정할 수 있을 것으로 판단된다. The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.

      • 콘크리트의 투수성 측정 및 초저투수성 콘크리트의 개발 연구

        오병환,정원기,차수원,장봉석 한국콘크리트학회 1996 콘크리트학회지 Vol.8 No.5

        콘크리트의 투수성은 내구성에 커다란 영향을 미치는 요인이 된다. 콘크리트의 강도가 커질수록 투수성은 적어지므로 재래적인 방법으로는 투수 실험이 어렵다. 본 연구에서는 콘크리트의 투수성능향상을 위하여 투수성이 작은 콘크리트에 효과적으로 사용할 수 있는 새로운 투수기법을 연구하고, 투수성이 매우 낮은 초저투수성 콘크리트를 개발하는데 주목적을두고 있다. 이를 위하여 주요 실험변수로서 시멘트의 종류, 단위시멘트량, 혼화재 종류 및 첨가량 그리고 굵은 골재의 최대치수를 주요 변수로 하여 투수성 시험과 가도시험을 포괄적으로 수행하였다. 본 시험 결과 콘크리트의 강도가 증가함에 따라서 콘크리트의 내투수성은 향상됨을 알 수 있으며, 내투수성을 증진하기 위해서는 단위시멘트량의 증가보다는 적절한 혼화재 사용과 그 혼입량을 조절하는 것이 더욱 효과적임을 알 수 있었다. 보통배합의 일반 콘크리트는 투수성이 매우 높은 반면 본 연구에서 제안된 콘크리트는 실리카흄등의 적정 혼입으로 일반 콘크리트의 1/100이하의 매우 낮은 투수성을 보여 초저투수성 콘크리트의 개발이 가능하였다. 본 연구는 앞으로 콘크리트 구조물의 내구성 향상을 위한 중요한 토대를 구축하고 이에 따른 기초자료를 제공할 수 있는 것으로 사료된다. The permeability of concrete influences the durability of concrete remarkably. The conventional test method for permeability is very difficult to apply to high strength concrete because of its very low permeability. The present study employs a resonable and realistic test method for permeability of concrete and proposes a very low permeability concrete. To this end, comprehensive tests have been conducted and major test variables include the types and amount of cement. the types and amount of admixtures, and the size of aggregates. The present test results indicate t h a t the permeability decrease with the increase of strength and that the concrete with certain mineral admixtures exhibits very low permeability. The permeability of those high performance concrete is about 1/100 of conventional normal concrete. The present study provides a firm base for the use of very low permeable and hence very durable concrete.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼