RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Li Content on the Surface Film Formed on the Binary Mg–Li Alloys in NaCl Solution

        Chuanqiang Li,Dahui Liang,Yejia Lin,Yong Dong,Binqing Shi,Changjian Yan,Zhengrong Zhang 대한금속·재료학회 2024 METALS AND MATERIALS International Vol.30 No.1

        The surface film formed on the Mg–Li alloys with different Li content in 0.1 M NaCl solution were investigated via electrochemicaltesting, morphologies observation and chemical composition analysis in this work. The results revealed that thesurface film of Mg–14Li alloy (L14: body centred cubic (BCC)) possessed higher electrical resistivity and remained a highertolerating over-potential (0.1 V vs. open circuit potential) than those of Mg–4Li (L4: hexagonal closed-packed (HCP)) andMg–7.5Li (L7: HCP+BCC), resulting in a better corrosion performance. After 24 h immersion in NaCl solution, the wholesurface film of L14 remained undamaged and displayed weave-like and dense characteristic, while both L4 and L7 present aseverely damaged film. The cross-sectional details illustrated typical two layers of surface film formed on L14 with the outerlayer of ~ 1.5 μm and inner layer of ~ 2.5 μm in thickness, whilst only one layer of film with less than 2.5 μm in thicknesswas observed on L4 and L7. At last, combining analysis of X-ray diffraction, energy dispersive X-ray spectrometry, X-rayphotoelectron spectroscopy and transmission electron microscope confirmed the composition of outer layer of surface filmon the L14 contains much more Mg(OH)2 and Li-containing compounds, and the porous Mg(OH)2 film can be sealed by theLi-containing compounds, which is very different the single Mg(OH)2 film on the traditional magnesium and L4/L7 alloys. As a result, the best protective function of the surface film on the L14 alloy contribute to its high corrosion resistance.

      • KCI등재

        Recent Developments in the Effects of Different Dopants on the Structure and Property of Lithium Titanate Material

        Xi-Yang Li,Qian-Lin Chen,Min Yang,Ya-Nan Li,Jing-Bo Ma 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.3

        The lithium titanium spinel Li4Ti5O12 has attracted more and more attention as anode materials applied in lithium ion batteries. Li4Ti5O12 material has been found to be able to intercalate lithium ions without deformation of the lattice. However, compared with graphite and other anode materials, the low conductivity of Li4Ti5O12 restricts its charging and discharging rate. Doping is deemed to be a businesslike method to enhance ionic and electronic conductivity of Li4Ti5O12. This paper reviews the effects of Li4Ti5O12 with different doping ions on different crystal lattice states. And it has been found by a summary that the doping objective of doping ions at Li4Ti5O12 is also different. Moreover, the applications of ion doping in different fields of Li4Ti5O12 are prospected.

      • KCI우수등재

        Recent Development in the Rate Performance of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>

        Lin, Chunfu,Xin, Yuelong,Cheng, Fuquan,Lai, Man On,Zhou, Henghui,Lu, Li The Korean Vacuum Society 2014 Applied Science and Convergence Technology Vol.23 No.2

        Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

      • KCI등재

        Structural, magnetic and dielectric properties of (Li1+, Al3+) co-doped Ni0.5Zn0.5Fe2O4 ferrite ceramics prepared by the sol-gel auto-combustion method

        Qing Ni,Li Sun,Ensi Cao,Wentao Hao,Yongjia Zhang,Lin Ju 한국물리학회 2020 Current Applied Physics Vol.20 No.9

        (Li1+, Al3+) co-doped Ni0.5Zn0.5Fe2O4 ferrites, Ni0.5-xZn0.5-xLixAlxFe2O4 (x = 0.000, 0.025, 0.050 and 0.100), were synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD), field emission scanning electronic microscope (FESEM), vibrating sample magnetometer (VSM) and LCR meter were used to investigate the structural, magnetic and dielectric properties. Results of XRD and SEM indicate that both doping amount and calcination temperature play significant roles in crystal structure and grain growth. Also, it can be observed that the saturation magnetization and the coercivity change in a noticeable manner. The Ni0.475Zn0.475Li0.025Al0.025Fe2O4 ferrite sintered at 1200 °C has a relatively low coercivity value (62.93 Oe) and the largest saturation magnetization (110.95 emu/g). Besides, dielectric behavior is also improved by Li1+ and Al3+ co-doping

      • KCI등재

        Effect of Initial Microstructure on the Hot Deformation Behavior and Microstructure Evolution of Aluminum Alloy AA2060

        Chaoyang Li,Guangjie Huang,Lingfei Cao,Ruoxi Zhang,Yu Cao,Bin Liao,Lin Lin 대한금속·재료학회 2022 METALS AND MATERIALS International Vol.28 No.7

        The microstructure evolution and hot deformation behavior of a Li-containing aluminum alloy AA2060 with different initialmicrostructure (homogenized vs. pre-rolled) were studied by isothermal hot deformation. The tests were performed within awide range of deformation temperatures of 370–490 ℃ and strain rates of 0.01–10 s−1. Results show that the stress drop ratioof the pre-rolled specimen is higher than that of the homogenized one under the same deformation condition. Microstructurewere analyzed on the thermal processing maps in unstable and optimum processing domain, and a higher dynamic recrystallizationfraction can be observed in the pre-rolled specimen that has more substructures and smaller grains. Four typesof the dynamic recrystallization were observed and the mechanism for deformation softening was discussed in this work.

      • KCI우수등재

        Recent Development in the Rate Performance of Li4Ti<SUB>5</SUB>O<SUB>12</SUB>

        Chunfu Lin,Yuelong Xin,Fuquan Cheng,Man On Lai,Henghui Zhou,Li Lu 한국진공학회(ASCT) 2014 Applied Science and Convergence Technology Vol.23 No.2

        Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, Li4Ti5O12 (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor Li<SUP>+</SUP> ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

      • KCI등재

        Recent Development in the Rate Performance of Li4Ti5O12

        Chunfu Lin,Li Lu,Yuelong Xin,Fuquan Cheng,Man On Lai,Henghui Zhou 한국진공학회 2014 Applied Science and Convergence Technology Vol.23 No.2

        Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, Li4Ti5O12 (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor Li+ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

      • Expression and Clinical Significance of Myeloid Derived Suppressor Cells in Chronic Hepatitis B Patients

        Lu, Li-Rong,Liu, Jing,Xu, Zhen,Zhang, Geng-Lin,Li, De-Chang,Lin, Chao-Shuang Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.10

        We here document discovery of expression profile of myeloid derived suppressor cells (MDSCs) in chronic hepatitis B (CHB) patients and changes in the course of disease. The study population was composed of 75 outpatient HBV cases and 15 healthy control cases. Peripheral blood samples were collected for separation of mononuclear cells. Levels of MDSCs labeled with Lin-DR-CD11b+CD33+ obtained from peripheral blood mononuclear cells (PBMC), were revealed to have significant differences between the CHB and other groups. They were 0.414% for health control cases and 0.226% for CHB cases (Z=-2.356, p=0.0189). It also observed that the group of HBeAg positive cases had significant difference in MDSCs/PBMC median ($X^2=11.877$, p=0.003), compared with group of HBeAg negative cases and the healthy control group. It suggested considerable MDSCs might be involved in HBeAg immune tolerance. In addition, negative correlations between MDSCs/PBMC and parameters of ALT, AST and TBil, while positive correlation between MDSCs/PBMC and ALB parameter were found. Multiple comparisons between the four phases and health control phase again, there was a statistically sifnificant difference ($X^2=17.198$, p=0.002). Taken together, these findings may provide a new immunotherapy strategy for reduced the expression levels of MDSCs in CHB patients, through induction of an autoimmune response to virus removal.

      • KCI등재

        Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs

        Xu Hai-Yan,Ruan Jun Hai,Liu Fang Lin,Li Dong-Cai,Zhang Feng-Jun,Wang Ai-Guo,Sun Dao-Sheng,오원춘 한국세라믹학회 2022 한국세라믹학회지 Vol.59 No.3

        Lithium ions-doped NaV6O15 thin films have been prepared using a simple low temperature liquid phase deposition method and subsequent annealing process. X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning elec- tron microscopy (SEM), and photoelectron spectroscopy (XPS) have been used to study the structural and physicochemical characteristics of the NaV6O15 film. The films were grown on the FTO conductive glass and used directly as an electrode of sodium ion batteries. The prepared lithium ions-doped NaV6O15 thin film electrodes showed an excellent cycling stability and discharge capacity, which may be attributed to the stability of the Li+ embedded into the gap between the V–O layers to maintain the structure and its stable β-phase structure transformed after the first cycle. The cycling stability greatly improved with increasing annealing temperature, while the discharge capacity decreased. The capacities of the film electrodes annealed at 400 °C and 450 °C maintained above 97% after 100 cycles. The lithium-doped NaV6O15 underwent a phase transition dur- ing the first charge/discharge cycle. The new transformed phase has perfect crystal structure stability undergoing insertion and deinsertion of Na+. Therefore, the lithium-doped NaV6O15 thin film possesses good cycling stability and is expected to be a promising thin film cathode for sodium-ion batteries.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼