RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs

        Xu Hai-Yan,Ruan Jun Hai,Liu Fang Lin,Li Dong-Cai,Zhang Feng-Jun,Wang Ai-Guo,Sun Dao-Sheng,오원춘 한국세라믹학회 2022 한국세라믹학회지 Vol.59 No.3

        Lithium ions-doped NaV6O15 thin films have been prepared using a simple low temperature liquid phase deposition method and subsequent annealing process. X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning elec- tron microscopy (SEM), and photoelectron spectroscopy (XPS) have been used to study the structural and physicochemical characteristics of the NaV6O15 film. The films were grown on the FTO conductive glass and used directly as an electrode of sodium ion batteries. The prepared lithium ions-doped NaV6O15 thin film electrodes showed an excellent cycling stability and discharge capacity, which may be attributed to the stability of the Li+ embedded into the gap between the V–O layers to maintain the structure and its stable β-phase structure transformed after the first cycle. The cycling stability greatly improved with increasing annealing temperature, while the discharge capacity decreased. The capacities of the film electrodes annealed at 400 °C and 450 °C maintained above 97% after 100 cycles. The lithium-doped NaV6O15 underwent a phase transition dur- ing the first charge/discharge cycle. The new transformed phase has perfect crystal structure stability undergoing insertion and deinsertion of Na+. Therefore, the lithium-doped NaV6O15 thin film possesses good cycling stability and is expected to be a promising thin film cathode for sodium-ion batteries.

      • KCI등재

        First Principles Study of Structural and Electronic Properties of Pentagonal and Hexagonal Noble Metal Nanowires

        Zhijian Fu,Li-Jun Jia,JIHONG XIA,Hai-Bo Ruan,Ke Tang,Yong Pu,Zhao-Yi Zeng,Dian-Yong Tang,Bo Kong,Qi-Feng Chen 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2016 NANO Vol.11 No.6

        The equilibrium structure and electronic properties of four ultrathin free-standing pentagonal and hexagonal noble metal nanowires, that is, copper nanowires (CuNWs), silver nanowires (AgNWs), gold nanowires (AuNWs) and platinum nanowires (PtNWs), have been studied comprehensively by adopting a first-principles simulation based on the density-functional theory. The staggered topologies are more stable than the eclipsed ones by analyzing the bonding energy. The staggered ones with a linear atom chain in the center of the pentagonal or hexagons topologies are the preferred structures for CuNWs and AgNWs, but the staggered ones without a linear atom chain in the center of the pentagon or hexagon are the preferred structures for AuNWs and PtNWs due to the increasing core–core repulsions. The calculated electronic band structures and density of states present that all the noble metal nanowires are metallic. The projected densities of states (PDOS) of dominant d-states and the charge density show that the narrower d-state moved to the Fermi energy and metallic bonding character for all the noble metal nanowires.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼