RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        자갈-모래 혼합토의 액상화 거동

        김방식,강병희,윤여원 한국지반공학회 2007 한국지반공학회논문집 Vol.23 No.10

        In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and -anisotropically consolidated gravel-sand mixtures are investigated. For this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gravel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strain behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the -anisotropically consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

      • KCI등재

        정적하중 상태에서 포화된 실트질 모래의 액상화 거동

        이달원,Lee Dal-Won 한국농공학회 2006 한국농공학회논문집 Vol.48 No.4

        This study was carried out to investigate the liquefaction behaviour of saturated silty sand under monotonic loading conditions. The undrained soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. Undrained triaxial compression tests were performed at different confining pressures, void ratios and overconsolidation ratios and the samples were sheared to axial strains of about 20% to obtain monotonic loading conditions. It is shown that increasing confining pressures, void ratios and overconsoildation ratios increases the deviator stress, but it has no effect on increasing the dilatant tendencies. It is shown that complete static liquefaction was observed regardless of increases in the confining pressure, void ratio and overconsolidation ratio. Therefore, the confining pressure, void ratio and overconsoildation ratio does not provide significant effects on the liquefaction resistance of the silty sand. The presence of fines in the soil was shown to greatly increase the potential for static liquefaction and creates a particle structure with high compressibility for all cases.

      • KCI등재

        액상화 가능 지수를 이용한 국내 서해안 지역의 액상화 평가

        서민우,선창국,오명학 한국지진공학회 2009 한국지진공학회논문집 Vol.13 No.4

        느슨한 포화 사질토 층에 위치한 구조물은 지진 시 액상화로 인해 막대한 인적 경제적 피해가 발생하기 때문에 액상화 발생 가능 지반으로 분류된 지역은 구조물의 설계 및 운영 시 액상화 발생 가능성에 주의를 기울어야 한다. 한반도의 경우 중진 지역에 해당되고 역사 문헌의 발생 기록을 제외한 어떤 액상화 피해도 보고되지 않음에 따라 오랫동안 액상화에 대해서는 안전지대로 여겨져 왔다. 하지만, 최근 해외 지진 사례에 의하면 국내 서해안 지역 지반과 유사한 비소성 실트질 흙에서의 액상화 발생과 이로 인한 피해 사례가 종종 보고되고 있다. 본 연구에서는 국내에서의 액상화 가능성 평가 기법 합리화의 일환으로 서해안 두 부지를 대상으로 피에조콘 관입시험(CPTu)과 표준관입시험(SPT) 결과를 이용하여 액상화가능지수(LPI)를 산정하였다. LPI는 심도 20m까지의 액상화 가능성을 통합 적분하여 액상화로 인한 지표면 피해 발생 정도를 지수로 제시한다. 먼저 대상 현장에 대해 시나리오별 액상화 발생 가능성을 평가한 후, CPTu와 SPT로부터 산정된 LPI 값을 비교하였다. 액상화 저항 강도를 의미하는 진동저항응력비(CRR) 값에 의하면, CPTu로부터 구한 보정 콘 선단저항력 (qc1N)CS가 40에서 120 사이인 경우 또는 CRR이 0.23 이하인 경우에 SPT로부터의 산정된 값보다 작게 평가되었다. 또한 CRR 차이는 세립질 함유량이 큰 흙에서 두 방법 간의 차이가 더 크게 나타났다. Liquefaction is a significant threat to structures on loose saturated sandy soil deposits in the event of an earthquake, and can often cause catastrophic damage, economic loss, and loss of life. Nevertheless, the Korean peninsula has for a long time been recognized as a safe region with respect to the hazard of liquefaction, as the peninsula is located in a moderate seismicity region, and there have been no reports of liquefaction, with the exception of references in some historical documents. However, some earthquakes that have recently occurred in different parts of the world have led to liquefaction in non-plastic silty soils, a soil type that can be found in many of the western coastal areas of Korea. In this study, we first present procedures for evaluating the liquefaction potential, and calculate the liquefaction potential index (LPI) distribution at two western coastal sites using both piezocone penetration test (CPTu) data and standard penetration test (SPT) data. The LPI is computed by integrating liquefaction potential over a depth of 20m, and provides an estimate of liquefaction-related surface damage. In addition, we compared the LPI values obtained from CPTu and SPT, respectively. Our research found that the CRR values from CPTu were lower than those from the SPT, particularly in the range between 40 and 120 for the corrected tip resistance, (qc1N)CS, from the CPTu, or in the range of CRR less than 0.23, resulting in relatively high LPI values. Moreover, it was observed that the differences in the CRR between the two methods were relatively higher for soils with high fine contents.

      • KCI등재

        정적 및 동적 하중에서 모래의 액상화 발생

        양재혁 한국지반공학회 2001 한국지반공학회논문집 Vol.17 No.6

        액상화는 비배수조건에서 흙 강도의 갑작스러운 감소에 기인한다. 이러한 흙 강도의 손실은 과잉간극수압의 발현과 관련된다. 본 연구에서는 최대 및 최소간극비에 영향을 미치는 세립분 함유량이 조사되었다. 또한 포화된 실트질 모래에 대한 정적 및 동적 삼축시험의 결과를 제시하였다. 이들 시험은 액상화강도와 정적 및 동적 거동 특성을 평가하기 위해 수행되었다. 시료는 새만금 유역에서 채취되었으며 공기건조되었다. 결과를 요약하면 다음과 같다. 1) 최대 및 최소간극비선은 유사한 경향으로 나타났다. 2) 최대 및 최소간극비는 20~30%의 세립분 함유량에서 얻어졌다. 3) 구속압력과 과압밀비가 증가할수록 액상화에 대한 저항은 증가하였다. 4) 불안정마찰각은 초기상대밀도의 증가와 함께 커졌다. 5) 유효응력비가 증가함에 따라 액상화에 대한 저항은 감소하였다. Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

      • KCI등재

        반복직접단순전단시험을 이용한 모래의 액상화 저항 특성 고찰

        황병윤,곽태영,김종관,한진태 한국방재학회 2020 한국방재학회논문집 Vol.20 No.4

        In this study, a series of cyclic direct simple shear tests were conducted on Pohang sand, Jumunjin sand, and Ottawa sand. The cyclic resistance ratio (CRR) was derived on the basis of the test results obtained. For verification of the effect of particle distribution on liquefaction resistance, the simplified method for evaluation of the possibility of liquefaction was used to assess these sands. The test results showed that the cyclic resistance ratio of Pohang sand was the lowest, which was consistent with the result of the simplified evaluation method for determining the possibility of liquefaction. In addition, the results showed that the liquefaction resistance increased for particle shapes being more angular than round. Normalization was subsequently applied to minimize the effects of the different factors, and the correlation between the CRRN=10 normalization curve and the CRRN=15 normalization curve was confirmed. 본 연구에서는 포항 액상화 현상 발생 현장에서 채취한 모래를 비롯한 두 종류의 대표적인 사질토인 주문진 표준사와 오타와모래를 사용하여 반복직접단순전단시험을 수행하였으며, 시험결과를 기반으로 액상화 저항곡선을 도출하여 액상화 저항강도(CRR)를 산정하였다. 포항 현장 모래의 액상화 저항강도가 가장 낮게 나와 액상화 발생 가능성 도표와 부합함을 확인하였으며, 입자 형상이 모날수록 액상화 저항강도가 증가하는 경향 또한 확인하였다. 추가적으로, 인자의 영향을 최소화하기 위하여정규화 방법을 적용하였으며, 국내 내진설계기준을 적용한 CRRN=10정규화 곡선과 규모 7.5의 지진을 기준으로 하는 CRRN=15정규화 곡선의 상관성을 확인하였다.

      • 진동삼축시험을 통한 실트질 모래의 액상화 강도에 대한 연구

        박종관,김상규,한성길,Park, Jong-Gwan,Kim, Sang-Gyu,Han, Seong-Gil 한국지반공학회 1998 지반 : 한국지반공학회지 Vol.14 No.1

        국내 해안에 퇴적된 실트질 모래와 hydraulic fill한 지반에서 채취한 시료의 액상화 강도 측정을 위해 응력제어 진동삼축압축시험을 수행하였다. 이를 위해 1) 불교란시료와 교란시료의 액상화 강도 산정과 2) 등방 압밀된 시료와 비등방 압밀된 시료의 반복삼축시험결과 비교, 3) 본 시험결과와 국내 다른 시험자료 및 외국의 결과를 비교하였다. 등방 압밀 시료의 액상화 강도는 시료의 상대밀도에 따라 나타내었다. 실트질 함유량이 30%이하의 경우 액상화 강도는 실트질 영향을 거의 받지 않음이 나타났다. 비등방 압밀된 시료의 액상화 강도는 수직응력을 구속응력으로 나눈 유효압밀비에 영향을 받는다. 본 연구의 시험결과 한국 서해안의 실트질 모래의 액상화 강도는 Seed and Pea cock(1971)가 제안한 범위에서 내에 있음을 알 수 있다. Samples of silty sands and hydraulic fill ground were investigated by dynamic triaxial teats in order to evaluate the liquefaction strengths. In the tests, (1) undisturbed and disturbed samples were prepared, (2) dynamic shear strengths were measured under isotropic and anisotropic condition, and (3) the test results were compared with the other results which were tested by domestic and foreign researchers. The liquefaction shear strengths under ismtropic test condition were presented in terms of the relative densities. The amount of silt under 30o hardly influenced on the liquefaction strength. In the test results of anisotropically consolidated samples the liquefaction strength was dependent on the magnitude of the effective consolidation ratio. These teat results show that the liquefaction strength of the silty sand in Korea went coast exists within the boundary of the values suggested by Seed and Peacock(1971).

      • KCI등재

        과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석

        유무성(Moo-Sung Ryu),황재익(Jai-Ik Hwang),김성렬(Sung-Ryul Kim) 한국해양공학회 2010 韓國海洋工學會誌 Vol.24 No.5

        In this paper, a total stress analysis method for gravity quay mills is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill sails according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay mills can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

      • KCI등재

        1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과

        심성훈,윤종찬,손수원,김진만 한국지진공학회 2020 한국지진공학회논문집 Vol.24 No.5

        Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

      • Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

        Choi, Byoung-Yeol,Lee, Sang-Gil,Kim, Jin-Kwang,Oh, Jin-Soo Korean Society of Ocean Engineers 2017 Journal of advanced research in ocean engineering Vol.3 No.2

        This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.

      • KCI등재

        모래-세립분 혼합토에 대한 반복전단강도특성 평가

        김욱기,김동욱,이준용,김주형 한국지반공학회 2012 한국지반공학회논문집 Vol.28 No.7

        In most design codes, soils are classified as either sandy or clayey soils, and appropriate design equations for each soil type are used to estimate their soil behaviour. However, sand-fine mixtures, which are typically referred to as intermediate soils, are somewhere at the middle of sandy or clayey soils, and therefore a unified interpretation of soil behaviour is necessary. In this paper, a series of cyclic shear tests were carried out for three different combinations of sand-fine mixtures with various fines content. Silica-sand mixture and fines (Iwakuni natural clay, Tottori silt, kaolinite)were mixed together with various mass ratios, while paying attention to the changes of void ratios expressed in terms of sand structure. The cyclic shear strengths of the mixtures below the threshold fines content were examined with the increasing fines contents. As a result, as the fines contents increased, their cyclic deviator stress ratios decreased for dense samples while it increased for loose samples. Additionally, cyclic deviator stress ratio of the mixtures was estimated using the concept of equivalent granular void ratio.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼