RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

        Xiaomeng Zhao,Xueke Feng,Nan Ye,Panpan Wei,Zhanwei Zhang,Wenyu Lu 대한생리학회-대한약리학회 2021 The Korean Journal of Physiology & Pharmacology Vol.25 No.4

        Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with dif-ferent conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhib-ited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

      • KCI등재

        MiR-200c-3p inhibits LPS-induced M1 polarization of BV2 cells by targeting RIP2

        Zhao Lei,Liu Xiaosong,Yang Jiankai,Wang Xiaoliang,Liu Xiaomeng,Wu Jianliang,Li Chen,Xu Donggang,Hu Yuhua 한국유전학회 2022 Genes & Genomics Vol.44 No.4

        Background: Microglia are important immune cells, which can be induced by lipopolysaccharide (LPS) into M1 phenotype that express pro-inflammatory cytokines. Some studies have shown that microRNAs play critical roles in microglial activation. Objective: This study was designed to investigate the role of miR-200c-3p in regulating inflammatory responses of LPS-treated BV2 cells. Methods: The expression of miR-200c-3p in BV2 cells was detected by real-time PCR. Receptor-interacting protein 2 (RIP2) was predicted as a target gene of miR-200c-3p. Their relationship was verified by dual-luciferase reporter assay. The function of miR-200c-3p and RIP2 in microglial polarization and NF-κB signaling was further evaluated. Results: LPS treatment reduced miR-200c-3p expression in a dose-dependent and time-dependent manner in BV2 cells. LPS treatment increased the expression of M1 phenotype markers inducible nitric oxide synthase (iNOS) and major histocompatibility complex class (MHC)-II, promoted the release of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and enhanced the nuclear translocation and phosphorylation of nuclear factor-kappaB (NF-κB) p65. Reversely, miR-200c-3p mimics down-regulated the levels of these inflammatory factors. Furthermore, RIP2 was identified to be a direct target of miR-200c-3p. RIP2 knockdown had a similar effect to miR-200c-3p mimics. Overexpression of RIP2 eliminated the inhibitory effect of miR-200c-3p on LPS-induced M1 polarization and NF-κB activation in BV2 cells. Conclusions: MiR-200c-3p mimics suppressed LPS-induced microglial M1 polarization and NF-κB activation by targeting RIP2. MiR-200c-3p/RIP2 might be a potential therapeutic target for the treatment of neuroinflammation-associated diseases.

      • KCI등재

        Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

        Wei Zhang,Xiaomeng Zhao,Mengya Shi,Aizhen Yang,Baoguang Hua,Yueping Liu 한국원예학회 2016 원예과학기술지 Vol.34 No.1

        Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.

      • SCIESCOPUSKCI등재

        Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

        Zhang, Wei,Zhao, Xiaomeng,Shi, Mengya,Yang, Aizhen,Hua, Baoguang,Liu, Yueping Korean Society of Horticultural Science 2016 원예과학기술지 Vol.34 No.1

        Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.

      • SCIESCOPUSKCI등재

        Immobilization of GH78 α-L-Rhamnosidase from Thermotoga petrophilea with High-Temperature-Resistant Magnetic Particles Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-NH<sub>2</sub>-Cellu-ZIF8 and Its Application in the Production of Prunin Form Naringin

        ( Jin Xu ),( Xuejia Shi ),( Xiaomeng Zhang ),( Zhenzhong Wang ),( Wei Xiao ),( Linguo Zhao ) 한국미생물생명공학회(구 한국산업미생물학회) 2021 Journal of microbiology and biotechnology Vol.31 No.3

        To efficiently recycle GH78 thermostable rhamnosidase (TpeRha) and easily separate it from the reaction mixture and furtherly improve the enzyme properties, the magnetic particle Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-NH<sub>2</sub>-Cellu-ZIF8 (FSNcZ8) was prepared by modifying Fe<sub>3</sub>O<sub>4</sub>-NH<sub>2</sub> with tetraethyl silicate (TEOS), microcrystalline cellulose and zinc nitrate hexahydrate. FSNcZ8 displayed better magnetic stability and higher-temperature stability than unmodified Fe<sub>3</sub>O<sub>4</sub>-NH<sub>2</sub> (FN), and it was used to adsorb and immobilize TpeRha from Thermotoga petrophilea 13995. As for properties, FSNcZ8-TpeRha showed optimal reaction temperature and pH of 90℃ and 5.0, while its highest activity approached 714 U/g. In addition, FSNcZ8-TpeRha had better higher-temperature stability than FN. After incubation at 80℃ for 3 h, the residual enzyme activities of FSNcZ8-TpeRha, FN-TpeRha and free enzyme were 93.5%, 63.32%, and 62.77%, respectively. The organic solvent tolerance and the monosaccharides tolerance of FSNcZ8-TpeRha, compared with free TpeRha, were greatly improved. Using naringin (1 mmol/l) as the substrate, the optimal conversion conditions were as follows: FSNcZ8-TpeRha concentration was 6 U/ml; induction temperature was 80℃; the pH was 5.5; induction time was 30 min, and the yield of products was the same as free enzyme. After repeating the reaction 10 times, the conversion of naringin remained above 80%, showing great improvement of the catalytic efficiency and repeated utilization of the immobilized α-L-rhamnosidase.

      • KCI등재

        Preparation of the Water-Soluble Fluorene-Containing Fluorescent Polymer by One-Pot Method

        Yuan Wang,Hongchi Zhao,Haijian Tan,Xiaomeng Li,Yunxia Qian,Libin Bai,Yonggang Wu,Shufang Lv 한국고분자학회 2015 Macromolecular Research Vol.23 No.10

        A water-soluble fluorescent polymer, 2,7-di{4'-[3''-(S-poly(acryloyl ethylene diamine hydrochloride)-2'''- methyl propionic acid)propionyloxy hexyloxy]phenyl}-9,9-di(n-octyl)fluorene (P3) with regular and ordered structure, was designed and synthesized with high conversion using click reaction between thiols and carbon-carbon double bonds. Because the S-H bond is relatively weak, thiol groups are subject to rapid oxidation during purification and storage and thereby result in the low conversion in the following click reaction. To circumvent this limitation, the synthesis of thiol groups and click reaction were simultaneously performed in one system (one-pot method). The intermediate products P1 (S-1-dodecyl-S'-[poly(N-Boc-acryloyl ethylene diamine)-2'-methyl propionic acid]trithiocarbonate) and M2 (2,7-di[4-(acryloyloxy hexyloxy)phenyl]-9,9-di(n-octyl)fluorene) were prepared via reversible addition fragmentation chain transfer (RAFT) polymerization and Williamson synthesis, respectively. Then, 2,7- di{4'-[3''-(S-poly(N-Boc-acryloyl ethylene diamine)-2'''-methyl propionic acid)propionyloxy hexyloxy]phenyl}- 9,9-di(n-octyl)fluorene (P2) was synthesized with high conversion (83%) by employing a click reaction with P1 and M2 as starting materials. Finally, water-soluble fluorescent polymer P3 was obtained after the deprotection of P2. M2, P1, P2 and P3 were characterized by Fourier transform infrared (FTIR) spectrum, nuclear magnetic resonance (NMR), high-resolution mass spectroscopy (MS), gel permeation chromatograph (GPC), UV-Visible (UV-Vis) spectrum, and fluorescence, respectively. The results revealed that P3 displayed good solubility in water and not only exhibited a blue fluorescence emission band in water but also had a similar photoluminescent spectra to those of M2 and P2 in dichloromethane. The fluorescence quantum yield of P3 in aqueous solution could reach 0.10. In addition, the result of cell cytotoxicity indicates that P3 has low cytotoxicity and exhibits potential for biomedical applications. This work provides a new insight into the study of water-soluble fluorescent polymer.

      • KCI등재

        Application of galactinol to tomato enhances tolerance to cold and heat stresses

        Liu Yudong,Zhang Li,Ma Jian,Meng Sida,Pang Chunpeng,Zhao Xiaomeng,Zhang Huidong,Wang Shou,Xu Tao,He Yi,Liu Yufeng,Qi Mingfang 한국원예학회 2022 Horticulture, Environment, and Biotechnology Vol.63 No.3

        Galactinol, a galactosyl donor, is the key substrate in raffinose family oligosaccharide (RFO) biosynthesis pathways. Many studies proved that galactinol also regulates some defense-related genes to be transcribed as a sugar signal under biotic and abiotic stresses. There are four galactinol synthase (SlGolS) genes in tomato. In this study, SlGolS1, SlGolS2, and SlGolS4 responded to cold stress, especially SlGolS1 stems treated for 12 h and SlGolS4 stems treated for 24 h. Under heat stress, the expression levels of SlGolS1, SlGolS2, and SlGolS3, especially SlGolS1 and SlGolS2, increased in leaves, roots, and stems. When expressed in E. coli cells, SlGolS2 and SlGolS4 enhanced cold tolerance, whereas SlGolS1 and SlGolS3 improved heat tolerance. These results suggested that SlGolS family members played different roles in tolerance to cold and heat stresses. In addition, the application of galactinol or galactinol + α-galactosidase inhibitor (DGJ) improved the cold and heat tolerances of tomato plants, whereas the single application of DGJ had no effect. Interestingly, the applications of DGJ, galactinol, and galactinol + DGJ also affected the expression levels of SlRS, SlSTS, and SlAGAL under cold and heat stresses. These findings indicated that galactinol was involved in the biosynthesis pathways of RFOs as a galactosyl donor and regulated the expression levels of RFO biosynthesis and breakdown-related genes as a sugar signal under cold and heat stresses.

      • KCI등재

        Effects of Lactobacillus plantarum SCS2 on blood glucose level in hyperglycemia mice model

        Xiao Meng,Yu Qian,Li-Shi Jiang,Jin-Mei Kang,Yan Chen,Juan Wang,Shu-Kun Liu,Zhen-Ming Che,Xin Zhao 한국응용생명화학회 2016 Applied Biological Chemistry (Appl Biol Chem) Vol.59 No.1

        In this study, the hyperglycemia mice model was established with 1-week high sugar and fat diet plus with 70 mg/kg body weight of streptozotocin injection for 3 days. Sixty male Kunming mice of 3 weeks old in a specific-pathogen-free grade were divided into six groups randomly, which includes normal group (NG), prevention group (PG), treatment group for low dose (TGL), middle dose (TGM), high dose (TGH), and model group (MG). NG and MG mice were fed with sterile physiological saline (10 mL/kg body weight). PG mice were fed with the concentration of 6.0 × 109 CFU/mL L. plantarum SCS2 suspensions from the second to third week. TGL, TGM, and TGH mice were fed with the concentration of 2.0 × 109, 4.0 × 109, and 6.0 × 109 CFU/mL L. plantarum SCS2 suspensions (10 mL/kg body weight), respectively from fourth to tenth week. The results showed that the fasting and postprandial 2 h blood glucose levels of TGH mice were reduced by L. plantarum SCS2 significantly (p < 0.05) as compared with MG. The body weight of TGH mice came to normal level at tenth week. Content of K+ in plasma of TGH mice was increased and contents of Na+ and Cl− in the plasma of TGH mice were decreased as compared with MG. Meanwhile, content of glycogen in TGH mice was reduced. However, the effect of L. plantarum SCS2 on the prevention of hyperglycemia in PG mice was not significant as compared with NG mice during the experiment. These results suggested that L. plantarum SCS2 showed a hypoglycemic effect on hyperglycemic mice model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼