RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        MAO-inhibitors in Parkinson's Disease

        Peter Riederer,Gerd Laux 한국뇌신경과학회 2011 Experimental Neurobiology Vol.20 No.1

        Monoamine oxidase inhibitors (MAO-I) belong to the earliest drugs tried in Parkinson's disease (PD). They have been used with or without levodopa (L-DOPA). Non-selective MAO-I due to their side-effect/adverse reaction profile, like tranylcypromine have limited use in the treatment of depression in PD, while selective, reversible MAO-A inhibitors are recommended due to their easier clinical handling. For the treatment of akinesia and motor fluctuations selective irreversible MAO-B inhibitors selegiline and rasagiline are recommended. They are safe and well tolerated at the recommended daily doses. Their main differences are related to (1) metabolism, (2) interaction with CYP-enzymes and (3) quantitative properties at the molecular biological/genetic level. Rasagiline is more potent in clinical practise and has a hypothesis driven more favourable side effect/adverse reaction profile due to its metabolism to aminoindan. Both selegiline and rasagiline have a neuroprotective and neurorestaurative potential. A head-to head clinical trial would be of utmost interest from both the clinical outcome and a hypothesis-driven point of view. Selegiline is available as tablet and melting tablet for PD and as transdermal selegiline for depression, while rasagiline is marketed as tablet for PD. In general, the clinical use of MAO-I nowadays is underestimated. There should be more efforts to evaluate their clinical potency as antidepressants and antidementive drugs in addition to the final proof of their disease-modifying potential. In line with this are recent innovative developments of MAO-I plus inhibition of acetylcholine esterase for Alzheimer's disease as well as combined MAO-I and iron chelation for PD.

      • Investigation on oxidative stress and therapeutical implications in dementia

        Mu¨nch, Gerald,Durany, Nuria,Michel, Tanja,Riederer, Peter 한림대학교 환경·생명과학연구소 2000 일송 의학ㆍ생명과학 심포지엄 Vol.- No.2

        Alzheimer's disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death and formation of amyloid plaques and neurofibrillary tangles (NFTs) NFTs are composed of hyperphosphorylated tau protein, and senile plaques contain aggregates of the β-peptide. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress during the course of the disease. Advanced glycation endproducts (AGEs), which are formed by a nonenzymatic reaction of glucose with long-lived protein deposits, are potentially toxic to the cell, are present in brain plaques in AD, and its extracellular accumilation in AD may be caused by an accelerated oxidation of glycated proteins. The microtubuli-associated protein tau is also subject to intracellular AGE formation. AGEs participate in neuronal death causing direct (chemical) radical production: Glycated proteins produce nearly 50-fold more radical production: Interaction of AGEs with cells increases oxidative stress. During aging cellular defence mechanisms weaken and the damages to cell constituents accumulate leading to loss of function and finally cell death. The development of drugs for the treatment of AD remains at a very unsatisfying state. However, pharmacological approaches which break the vicious cycles of oxidative stress and neurodegeneration offer new opportunities for the treatment of AD. Theses approaches include AGE-inhibitors, antioxidants, and anti-inflammatory substances, which prevent radical production. AGE inhibitors might be able to stop formation of AGE-modified β-amyloid deposits, antioxidants are likely to scavenge intracellular and extrcellular superoxide radicals and hydrogen peroxide before these radicals damage cell constituents or activate microglia, and anti-inflammatory drugs attenuating microglial radical and cytokine production.

      • SCISCIESCOPUS

        Na<sup>+</sup>/H<sup>+</sup> Exchanger Regulatory Factor 3 Is Critical for Multidrug Resistance Protein 4-Mediated Drug Efflux in the Kidney

        Park, Joonhee,Kwak, Jin-Oh,Riederer, Brigitte,Seidler, Ursula,Cole, Susan P.C.,Lee, Hwa Jeong,Lee, Min Goo American Society of Nephrology 2014 Journal of the American Society of Nephrology Vol.25 No.4

        <P>Na(+)/H(+) exchanger regulatory factor 3 (NHERF3) is a PSD-95/discs large/ZO-1 (PDZ)-based adaptor protein that regulates several membrane-transporting proteins in epithelia. However, the in vivo physiologic role of NHERF3 in transepithelial transport remains poorly understood. Multidrug resistance protein 4 (MRP4) is an ATP binding cassette transporter that mediates the efflux of organic molecules, such as nucleoside analogs, in the gastrointestinal and renal epithelia. Here, we report that Nherf3 knockout (Nherf3(-/-)) mice exhibit profound reductions in Mrp4 expression and Mrp4-mediated drug transport in the kidney. A search for the binding partners of the COOH-terminal PDZ binding motif of MRP4 among several epithelial PDZ proteins indicated that MRP4 associated most strongly with NHERF3. When expressed in HEK293 cells, NHERF3 increased membrane expression of MRP4 by reducing internalization of cell surface MRP4 and consequently, augmented MRP4-mediated efflux of adefovir, a nucleoside-based antiviral agent and well known substrate of MRP4. Examination of wild-type and Nherf3(-/-) mice revealed that Nherf3 is most abundantly expressed in the kidney and has a prominent role in modulating Mrp4 levels. Deletion of Nherf3 in mice caused a profound reduction in Mrp4 expression at the apical membrane of renal proximal tubules and evoked a significant increase in the plasma and kidney concentrations of adefovir, with a corresponding decrease in the systemic clearance of this drug. These results suggest that NHERF3 is a key regulator of organic transport in the kidney, particularly MRP4-mediated clearance of drug molecules.</P>

      • SCISCIESCOPUS

        Rescue of epithelial HCO<sub>3</sub><sup>−</sup> secretion in murine intestine by apical membrane expression of the cystic fibrosis transmembrane conductance regulator mutant F508del

        Xiao, Fang,Li, Junhua,Singh, Anurag Kumar,Riederer, Brigitte,Wang, Jiang,Sultan, Ayesha,Park, Henry,Lee, Min Goo,Lamprecht, Georg,Scholte, Bob J.,De Jonge, Hugo R.,Seidler, Ursula Blackwell Publishing Ltd 2012 The Journal of physiology Vol.590 No.21

        <P><B>Key points</B></P><P><P>Cystic fibrosis (CF) is a lethal disease characterized by low rates of epithelial Cl<SUP>−</SUP> and HCO<SUB>3</SUB><SUP>−</SUP> secretion and obstruction of the airways and gastrointestinal and reproductive organs by sticky mucus. HCO<SUB>3</SUB><SUP>−</SUP> secretion has recently been demonstrated to be necessary for mucus hydration.</P><P>The most frequent CF mutation is F508del. This mutant protein is usually degraded in the proteasome. New therapeutic strategies have been developed which deliver F508del to the plasma membrane.</P><P>Utilizing transgenic F508del mutant and cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice, apical membrane expression of F508del protein was found to be associated with enhanced stimulation of intestinal HCO<SUB>3</SUB><SUP>−</SUP> secretion.</P><P>The predominant molecular mechanism for enhanced F508del HCO<SUB>3</SUB><SUP>−</SUP> stimulation appeared to be the activation of a Cl<SUP>−</SUP> recycling pathway, with Cl<SUP>−</SUP> exit via membrane‐resident F508del protein and Cl<SUP>−</SUP> entry in exchange for HCO<SUB>3</SUB><SUP>−</SUP> by apical Cl<SUP>−</SUP>/HCO<SUB>3</SUB><SUP>−</SUP> exchange. In contrast, the predominant molecular mechanism for cAMP‐activated HCO<SUB>3</SUB><SUP>−</SUP> secretion in WT intestine appears to be HCO<SUB>3</SUB><SUP>−</SUP> exit via CFTR itself.</P></P><P><B>Abstract </B> This study investigated whether expression of the common cystic fibrosis transmembrane conductance regulator (CFTR) mutant F508del in the apical membrane of enterocytes confers increased bicarbonate secretory capacity on the intestinal epithelium of F508del mutant mice compared to that of CFTR knockout (KO) mice. CFTR KO mice, F508del mutant mice (F508del) and wild‐type (WT) littermates were bred on the FVB/N background. F508del isolated brush border membrane (BBM) contained approximately 5–10% fully glycosylated band C protein compared to WT BBM. Similarly, the forskolin (FSK)‐induced, CFTR‐dependent short‐circuit current (Δ<I>I</I><SUB>sc</SUB>) of F508del mucosa was approximately 5–10% of WT, whereas the HCO<SUB>3</SUB><SUP>−</SUP> secretory response (<IMG src='/wiley-blackwell_img/equation/TJP_5291_mu1.gif' alt ='inline image'/>) was almost half that of WT in both duodenum and mid‐colon studied <I>in vitro</I> and <I>in vivo.</I> While WT intestine retained full FSK‐induced <IMG src='/wiley-blackwell_img/equation/TJP_5291_mu2.gif' alt ='inline image'/> in the absence of luminal Cl<SUP>−</SUP>, the markedly higher <IMG src='/wiley-blackwell_img/equation/TJP_5291_mu3.gif' alt ='inline image'/> than Δ<I>I</I><SUB>sc</SUB> in F508del intestine was dependent on the presence of luminal Cl<SUP>−</SUP>, and was blocked by CFTR inhibitors. The Ste20‐related proline–alanine‐rich kinases (SPAK/OSR1), which are downstream of the with‐no‐lysine (K) protein kinases (WNK), were rapidly phosphorylated by FSK in WT and F508del, but significantly more slowly in CFTR KO intestine. In conclusion, the data demonstrate that low levels of F508del membrane expression in the intestine of F508del mice significantly increased FSK‐induced HCO<SUB>3</SUB><SUP>−</SUP> secretion mediated by Cl<SUP>−</SUP>/HCO<SUB>3</SUB><SUP>−</SUP> exchange. However, in WT mucosa FSK elicited strong SPAK/OSR1 phosphorylation and Cl<SUP>−</SUP>‐independent HCO<SUB>3</SUB><SUP>−</SUP> efflux. This suggests that therapeutic strategies which deliver F508del to the apical membrane have the potential to significantly enhance epithelial HCO<SUB>3</SUB><SUP>−</SUP> secretion.</P>

      • Alzheimer's disease - synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts

        Vlassara, H.,Li, J. J.,Loske, C.,Perry, G.,Wong, A.,Munch, G.,Durany, N.,Schinzel, R.,Smith, M. A.,Riederer, P. 한림대학교 한림과학원 부설 환경ㆍ생명과학연구소 1998 국제학술회의 Vol.1998 No.-

        Many approaches have been undertaken to understand Alzheimer's disease(AD) but the heterogeneity of the etiologic factors makes it difficult to define the clincally most important factor determining the onset and progression of the disease. However, there is increasing evidence that the previously so-called "secondary factors" such as a disturbed glucose metabolism, oxidative stress and formation of "advanced glycation endproducts" (AGEs) and their interaction in a vicious cycle are also important for the onset and progression of AD. AGEs are protein codifications that contribute to the formation of the histopathological and biochemical hallmarks of AD: amyloid plaques, neurofibrillary tangles and activated microglia. Oxidative modifications are formed by a complex cascade of dehydration, oxidation and cyclisation reactions, subsequent to a non-enzymatic reaction of sugars with amino groups of proteins. Accumulation of AGE-crosslinked proteins throughout life is a general phenomenon of ageing. However, AGEs are more that just markers of ageing since they can also exert adverse biologic effects on tissues and cells, including the activation of intracellular signal transduction pathways, leading to the upregulation of cytokine and free radical production (oxidative stress). Oxidative stress is involved in various divergent events leading to cell damage, including an increase in membrane rigidity, DNA strand breaks and an impairment in glucose uptake. In addition, other age-related metabolic changes such as depletion of antioxidants or decreased energy production by a disturbed glucose metabolism diminish the ability of the cell to cope with the effects of radical-induced membrane, protein and DNA damage. With our improving understanding of the molecular basis for the clinical symptoms of dementia, it is hoped that the elucidation of the etiologic causes, particularly the positive feedback loops involving radical damage and a reduced glucose metabolism, will help to develop novel "neuroprotective" treatment strategies able to interrupt this vicious cycle of oxidative stress and energy shortage in AD.

      • KCI등재

        Viewpoints on Acid-Induced Inflammatory Mediators in Esophageal Mucosa

        ( Karen M Harnett ),( Florian Rieder ),( Jose Behar ),( Piero Biancani ) 대한소화관운동학회 2010 Journal of Neurogastroenterology and Motility (JNM Vol.16 No.4

        We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways. Epithelial cells contain TRPV1 receptor mRNA and protein and respond to HCl and to the TRPV1agonist capsaicin with production of PAF. PAF, SP and IL-8 act as chemokines, inducing migration of peripheral blood leukocytes. PAF and SP activate peripheral blood leukocytes inducing the production of H2O2. In circular muscle, PAF causes production of IL-6, and IL-6 causes production of additional H2O2, through activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Among these, NADPH oxidase 5 cDNA is significantly up-regulated by exposure to PAF; H2O2 content of esophageal and lower esophageal sphincter circular muscle is elevated in human esophagitis, causing dysfunction of esophageal circular muscle contraction and reduction in esophageal sphincter tone. Thus esophageal keratinocytes, that constitute the first barrier to the refluxate, may also serve as the initiating cell type in esophageal inflammation, secreting inflammatory mediators and pro-inflammatory cytokines and affecting leukocyte recruitment and activity.

      • KCI등재

        A test of endogenous trade bloc formation theory on EU data

        Richard Baldwin,Roland Rieder 대외경제정책연구원 2007 East Asian Economic Review Vol.11 No.2

        This paper empirically confronts one explanation of spreading regionalism with the European experience. The domino theory asserts that forming a preferential trade area, or deepening an existing one, produces trade diversion that generates new political-economy forces in third nations as third-nation exporters seek to redress the new discrimination and profit from newly deepened preferences. The pressure increases with the bloc’s size, yet bloc size depends upon how many nations join, so a single incidence of regionalism may trigger several rounds of membership requests from nations that were previously happy to stay out. We estimate a time-series of EU trade creation and diversion over the last five decades and use these to estimate a model of EU membership demands. The results provide broad support for the model and show that trade diversion has a more powerful impact on membership than trade creation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼