RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        LncRNA Gm2044 highly expresses in spermatocyte and inhibits Utf1 translation by interacting with Utf1 mRNA

        Ke Hu,Leina Li,Yaping Liao,Meng Liang 한국유전학회 2018 Genes & Genomics Vol.40 No.7

        Spermatogenesis is a process which includes the following phases: spermatogonial stem cell proliferation and differentiation, spermatogonia, spermatocyte, spermatid and mature sperm. Spermatogenic failure is the important factor resulting in male infertility. Recent studies showed that long noncoding RNA (lncRNA) have been found to be involved in the regulation of male reproduction. However, lncRNA associated with spermatogenesis and their mechanisms of action are unclear. The aim of this study is to explore the role and molecular mechanism of lncRNA in spermatogenesis. LncRNA microarray of germ cells and bioinformatic analysis showed lncRNA Gm2044 may play potential roles in spermatogenesis. The expression level of RNA and protein were analyzed by RT-qPCR and western blotting, respectively. The interaction of lncRNA with mRNA was detected by RNA pull down and cellular proliferation was measured using CCK-8 reagent. Testis-enriched lncRNA Gm2044 is abundant in mouse spermatocytes. Gm2044 can suppress the translation of adjacent spermatogenesisrelated gene Utf1 by interacting with Utf1 mRNA. Furthermore, the proliferation of mouse spermatogonia GC-1 cell line and spermatocyte GC-2 cell line was inhibited by Gm2044. CONCLUSION: LncRNA Gm2044 was identified to inhibit Utf1 mRNA translation and play important roles in spermatogenesis.

      • KCI등재

        Upregulated lncRNA Gm2044 inhibits male germ cell development by acting as miR-202 host gene

        Meng Liang,Ke Hu,Chaofan He,Jinzhao Zhou,Yaping Liao 한국통합생물학회 2019 Animal cells and systems Vol.23 No.2

        Long non-coding RNAs (lncRNAs) have been found to participate in the regulation of human spermatogenic cell development. However, little is known about the abnormal expression of lncRNAs associated with spermatogenic failure and their molecular mechanisms. Using lncRNA microarray of testicular tissue for male infertility and bioinformatics methods, we identified the relatively conserved lncRNA Gm2044 which may play important roles in non-obstructive azoospermia. The UCSC Genome Browser showed that lncRNA Gm2044 is the miR-202 host gene. This study revealed that lncRNA Gm2044 and miR-202 were significantly increased in nonobstructive azoospermia of spermatogonial arrest. The mRNA and protein levels of Rbfox2, a known direct target gene of miR-202, were regulated by lncRNA Gm2044. Furthermore, the miR- 202-Rbfox2 signalling pathway was shown to mediate the suppressive effects of lncRNA Gm2044 on the proliferation of human testicular embryonic carcinoma cells. Understanding of the molecular signalling pathways for lncRNA-regulated spermatogenesis will provide new clues into the pathogenesis and treatment of patients with male infertility.

      • The dynamic response of the FGM coated half-plane with hysteretic damping under time harmonic loading

        Xiao-Min Wang,Liao-Liang Ke,Yue-Sheng Wang 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.87 No.1

        This paper investigates the dynamic response of a functionally graded material (FGM) coated half-plane excited by distributed time harmonic loading. Three types of typical distributed surface loads, including uniform load, Hertz load, and square-root singular load, are considered. The mass density and elastic modulus of the FGM coating are supposed to be described by the exponential function. The material damping is modelled by a linearly hysteretic damping which is expressed by a complex modulus in the time harmonic motion. Using Fourier integral transform technique and numerical integral method, the effects of the excitation frequency, gradient index, damping, and load type on the dynamic stresses and displacements are discussed.

      • KCI등재

        O-GlcNAc transferase regulates intervertebral disc degeneration by targeting FAM134B-mediated ER-phagy

        Luo Rongjin,Li Gaocai,Zhang Weifei,Liang Huaizhen,Lu Saideng,Cheung Jason Pui Yin,Zhang Teng,Tu Ji,Liu Hui,Liao Zhiwei,Ke Wencan,Wang Bingjin,Song Yu,Yang Cao 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Both O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and endoplasmic reticulum-phagy (ER-phagy) are well-characterized conserved adaptive regulatory mechanisms that maintain cellular homeostasis and function in response to various stress conditions. Abnormalities in O-GlcNAcylation and ER-phagy have been documented in a wide variety of human pathologies. However, whether O-GlcNAcylation or ER-phagy is involved in the pathogenesis of intervertebral disc degeneration (IDD) is largely unknown. In this study, we investigated the function of O-GlcNAcylation and ER-phagy and the related underlying mechanisms in IDD. We found that the expression profiles of O-GlcNAcylation and O-GlcNAc transferase (OGT) were notably increased in degenerated NP tissues and nutrient-deprived nucleus pulposus (NP) cells. By modulating the O-GlcNAc level through genetic manipulation and specific pharmacological intervention, we revealed that increasing O-GlcNAcylation abundance substantially enhanced cell function and facilitated cell survival under nutrient deprivation (ND) conditions. Moreover, FAM134B-mediated ER-phagy activation was regulated by O-GlcNAcylation, and suppression of ER-phagy by FAM134B knockdown considerably counteracted the protective effects of amplified O-GlcNAcylation. Mechanistically, FAM134B was determined to be a potential target of OGT, and O-GlcNAcylation of FAM134B notably reduced FAM134B ubiquitination-mediated degradation. Correspondingly, the protection conferred by modulating O-GlcNAcylation homeostasis was verified in a rat IDD model. Our data demonstrated that OGT directly associates with and stabilizes FAM134B and subsequently enhances FAM134B-mediated ER-phagy to enhance the adaptive capability of cells in response to nutrient deficiency. These findings may provide a new option for O-GlcNAcylation-based therapeutics in IDD prevention.

      • KCI등재

        Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis

        Zhang Weifeng,Li Gaocai,Luo Rongjin,Lei Jie,Song Yu,Wang Bingjin,Ma Liang,Liao Zhiwei,Ke Wencan,Liu Hui,Hua Wenbin,Zhao Kangcheng,Feng Xiaobo,Wu Xinghuo,Zhang Yukun,Wang Kun,Yang Cao 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Low back pain (LBP) is a major musculoskeletal disorder and the socioeconomic problem with a high prevalence that mainly involves intervertebral disc (IVD) degeneration, characterized by progressive nucleus pulposus (NP) cell death and the development of an inflammatory microenvironment in NP tissue. Excessively accumulated cytosolic DNA acts as a damage-associated molecular pattern (DAMP) that is monitored by the cGAS-STING axis to trigger the immune response in many degenerative diseases. NLRP3 inflammasome-dependent pyroptosis is a type of inflammatory programmed death that promotes a chronic inflammatory response and tissue degeneration. However, the relationship between the cGAS-STING axis and NLRP3 inflammasome-induced pyroptosis in the pathogenesis of IVD degeneration remains unclear. Here, we used magnetic resonance imaging (MRI) and histopathology to demonstrate that cGAS, STING, and NLRP3 are associated with the degree of IVD degeneration. Oxidative stress induced cGAS-STING axis activation and NLRP3 inflammasome-mediated pyroptosis in a STING-dependent manner in human NP cells. Interestingly, the canonical morphological and functional characteristics of mitochondrial permeability transition pore (mPTP) opening with the cytosolic escape of mitochondrial DNA (mtDNA) were observed in human NP cells under oxidative stress. Furthermore, the administration of a specific pharmacological inhibitor of mPTP and self-mtDNA cytosolic leakage effectively reduced NLRP3 inflammasome-mediated pyroptotic NP cell death and microenvironmental inflammation in vitro and degenerative progression in a rat disc needle puncture model. Collectively, these data highlight the critical roles of the cGAS-STING-NLRP3 axis and pyroptosis in the progression of IVD degeneration and provide promising therapeutic approaches for discogenic LBP.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼