RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
          펼치기
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Backstepping Sliding Mode-based Model-free Control of Electro-hydraulic Systems

        Hoai Vu Anh Truong,TRINH HOAI AN,안경관 사단법인 유공압건설기계학회 2022 드라이브·컨트롤 Vol.19 No.1

        This paper presents a model-free system based on a framework of a backstepping sliding mode control (BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance as the ideal adaptive BSMC.

      • KCI등재

        Comprehensive Control Strategy and Verification for PEM Fuel Cell/Battery/Supercapacitor Hybrid Power Source

        Hoai-An Trinh,Hoai Vu Anh Truong,Minh-Duc Pham,Tri Cuong Do,Hong-Hee Lee,Kyoung Kwan Ahn 한국정밀공학회 2023 International Journal of Precision Engineering and Vol.10 No.2

        Using renewable energy is becoming a new tendency for vehicular applications to reduce fossil fuel consumption and minimize greenhouse gas emissions. Well-known as an eco-friendly energy source, the proton exchange membrane fuel cell (PEMFC) is extensively used in hybrid power systems to achieve the objective of zero-emission and air protection. However, this type of fuel cell offers slow dynamics and cannot adapt to abrupt load variations when used as a primary energy source. To overcome this shortcoming, battery (BAT) and/or supercapacitor (SC) are supplemented as auxiliary sources. In this paper, an innovative energy management strategy (EMS) for a PEMFC/BAT/SC hybrid power source (HPS) is proposed to improve the accuracy of power distribution from energy sources to the load. In detail, according to different characteristics of energy sources, a frequency decoupling (FD) method is designed to determine the required currents for PEMFC, BAT, and SC based on the load power demand. Besides, an adaptive DC bus control loop is utilized to guarantee a stable DC output voltage by using the BAT. The proposed EMS is simulated in a MATLAB/Simulink environment and experimentally implemented with a real-time DSP TMS320F28379D controller board. Subsequently, a test bench of a 200 W PEMFC, 24 V–12 Ah battery, and 25 V–60 F supercapacitor is conducted for experimental validation. The obtained results show that the proposed EMS is effective to coordinate energy flows between the three used sources and enhance the fuel cell performance in a hybrid power system.

      • KCI등재

        Evaluation of Robot Calibration Performance based on a Three Dimensional Small Displacement Measuring Sensor

        Hoai-Nhan Nguyen,Hee-Jun Kang(강희준) 제어로봇시스템학회 2014 제어·로봇·시스템학회 논문지 Vol.20 No.12

        There have been many autonomous robot calibration methods which form closed loop structures through the various attached sensors and mechanical fixtures. Single point calibration among them has been used for on-site calibration due to its convenience of implementation. The robot can reach a single point with infinitely many configurations so that single point calibration algorithm can be set up and easily implemented relative to the other methods. However, it is not still easy to drive the robots’ sharp edge to its corresponding edge of the fixture. This is error-prone process. In this paper, we propose a 3 dimensional small displacement measuring sensor and a robot calibration algorithm based on this sensor. This method relieves the difficulty of matching two edges in the single point calibration and improves the resulting robot accuracy. Simulated study is carried out on a Hyundai HA06 robot to show the effectiveness of the proposed method over the single point calibration. And also, the resulting robot accuracy is compared with that from 3D laser tracker based calibration to show the dependency of robot accuracy on range of the workspace where the measurement data are collected.

      • SCISCIE

        Synthesis, structure, and selective separation behavior of copper‐imprinted microporous polymethacrylate beads

        Hoai, Nguyen To,Kim, Dukjoon Wiley Subscription Services, Inc., A Wiley Company 2009 AIChE Journal Vol.55 No.12

        <P><B>Abstract</B></P><P>Metal ion‐imprinted polymethacrylate beads with sizes ranging from 100 to 300 μm were prepared by suspension polymerization for the application of selective separation of target metal ions. The metal ion contacting area of the beads was enlarged via pore formation (BET 425 m<SUP>2</SUP>/g) using toluene as a porogenic agent. The synthesis of the copper‐imprinted porous beads was verified using FTIR, SEM, and ESCA. Separation capacity and selectivity were investigated carrying out column separation experiments. The selective adsorption behavior of the imprinted beads was significantly affected by flow rate, pH, and metal ion concentration in the solution. Adsorption of the copper ion, the template metal ion, onto the beads was highly selective, compared with other ions such as nickel and zinc, with the selective coefficients at approximately 5–10. The microporous particles possessing such high selectivity has a potential application as novel column packing materials especially requiring high selective efficiency, which is usually not achievable by commercial ion exchange resins. © 2009 American Institute of Chemical Engineers AIChE J, 2009</P>

      • SCIESCOPUSKCI등재

        MRFR - Multipath-based Routing Protocol with Fast-Recovery of Failures on MANETs

        ( Hoai Phong Ngo ),( Myung Kyun Kim ) 한국인터넷정보학회 2013 KSII Transactions on Internet and Information Syst Vol.7 No.2

        We propose a new multipath-based reliable routing protocol on MANETs, Multipath-based Reliable routing protocol with Fast-Recovery of failures (MRFR). For reliable message transmission, MRFR tries to find the most reliable path between a source and a destination considering the end-to-end packet reception reliability of the routes. The established path consists of a primary path that is used to transmit messages, and the secondary paths that are used to recover the path when detecting failures on the primary path. After establishing the path, the source transmits messages through the primary path. If a node detects a link failure during message transmission, it can recover the path locally by switching from the primary to the secondary path. By allowing the intermediate nodes to locally recover the route failure, the proposed protocol can handle the dynamic topological change of the MANETs efficiently. The simulation result using the QualNet simulator shows that the MRFR protocol performs better than other protocols in terms of the end-to-end message delivery ratio and fault-tolerance capability.

      • KCI등재

        Fabrication and Surface Modification of Macroporous Silica Fibers by Electrospinning for Super Adsorbent of Oil

        Hoai Han Nguyen,Thi Thu Hien Nguyen,조영상 대한금속·재료학회 2022 대한금속·재료학회지 Vol.60 No.10

        Silica fibers were fabricated by sol-gel reaction and an electrospinning process. A high voltage source of electricity was applied to the prepared spinning solution to form the fibers. Macroporous silica fibers were prepared using polystyrene (PS) nanospheres as templates after calcination. The pore size could be controlled by adjusting the diameter of the PS nanospheres in the spinning solution. PS nanospheres with different diameters (250, 430, 600, 870, and 1000 nm) were synthesized for this purpose using the dispersion polymerization method. Silica fibers have a hydrophilic surface. A coating film applied to the fibers showed superhydrophilicity, which is not suitable for adsorbing oil contaminant. Thus, silane coupling agents containing methyl groups were used to modify the surface of the porous fibers to obtain hydrophobic and water-repellent properties. The amount of oil adsorbed by the porous silica fibers modified with various kinds of coupling agent or PS nanospheres with different sizes was investigated, to determine their effects on oil adsorption. When the size of the macropores in the fibers increased, the amount of oil adsorption increased, because oil infiltration through the pores became easier. Small hydrophobic groups of the silane coupling agent, like methyl groups, were able to adsorb more oil compared to bulky functional groups. The measured oil adsorption capacity of the porous fibers was found to be larger than that of mesomacroporous silica particles, since the voids between the fibers might provide additional space for oil adsorption.

      • KCI등재

        A High-linearity Wideband Discrete-time Receiver for Software-defined Radio

        Hoai-Nam Nguyen,D. M. A. N. B. Dissanayake,Seok-Kyun Han,Sang-Gug Lee 대한전자공학회 2018 Journal of semiconductor technology and science Vol.18 No.1

        A discrete-time (DT) receiver for software-defined radio (SDR) applications is presented. The receiver chain includes a wideband LNA and high linearity current commutating passive mixers merged with baseband switched-capacitor filters (SCFs) in current mode to simplify analog circuitries and reduce power consumption. An RF transconductor (RF TA) with capacitive-peaking bandwidth extension technique is proposed for the mixers to maximize the operating frequency band of the receiver. Implemented in a 0.18 μm CMOS process, the proposed receiver achieves a maximum voltage conversion gain of 41.2 dB, minimum NF of 3.8 dB, in-band IIP3 of -9 dBm, and out-of-band IIP3 of -6 dBm, respectively. The receiver operates from 0.7 to 2.4 GHz while dissipating 28-34 mA current from 1.8 V supplies.

      • SCOPUSKCI등재
      • KCI등재

        Solvent Extraction of Tungsten(VI) from Moderate Hydrochloric Acid Solutions with LIX 63

        Hoai Thanh Truong,김용환,이만승 대한금속·재료학회 2017 대한금속·재료학회지 Vol.55 No.6

        The solvent extraction of tungsten(VI) from hydrochloric acid solutions using 5,8-diethyl- 7-hydroxydodecan-6-one oxime (LIX 63) was analyzed in solutions having an initial pH range from 2 to 5, by varying the concentration of metal and extractant. In our experimental range, the cationic exchange reaction as well as the solvation reaction occurred simultaneously. The cation exchange reaction was identified by applying a slope analysis method to the extraction data. The existence of cationic tungsten(VI) species was confirmed by ion exchange experiments with Diphonix resin at pH 3. Further study is needed to identify the nature of this tungsten cationic species.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼