RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        분산 전개법에 의한 주파수-시간 영역 변환

        조인기 ( In Ky Cho ),김래영 ( Rae Yeong Kim ),고광범 ( Kwang Beom Ko ),유영준 ( Young June You ) 한국지구물리·물리탐사학회 2014 지구물리와 물리탐사 Vol.17 No.3

        전자 탐사는 신호원의 파형에 따라 주파수 영역과 시간 영역법으로 나누어진다. 주파수 영역과 시간 영역은 수학적으로 Fourier 변환 관계에 있으므로, 주파수 영역 자료를 Fourier 변환하여 시간 영역 자료를 얻어낼 수 있다. 즉, 시간영역 전자 탐사의 모델링 자료는 주파수 영역에서 수행한 모델링 자료의 적절한 변환을 통해 얻어질 수 있다. 따라서 주파수-시간 영역 변환은 전자 탐사에서 매우 중요한 부분이다. 분산 전개법(DEM)은 신속하고 효과적인 주파수-시간 영역변환 기법 중의 하나이다. 분산 전개법에서는 전자기장은 분산 함수와 분산 시간의 급수로 전개하며, 분산 시간은 주어진 주파수 자료에 의해 결정된다. 특히 적정 분산 시간의 설정은 분산 전개법의 정확성을 결정하는 주요 요소이다. 이 연구에서는 급수 전개에 의해 얻어진 주파수 영역 자료의 오차를 최소화하는 방법을 사용하여 적정 분산 시간의 설정 방법을 개발하였다. 반무한 공간 및 2층 구조 모델에 대하여 이 방법을 적용한 결과, 분산 전개법은 상당히 넓은 시간 대역에서 정확한 결과를 나타냄을 확인하였다. Electromagnetic (EM) methods are generally divided into frequency-domain EM (FDEM) and time-domain EM(TDEM) methods, depending on the source waveform. The FDEM and TDEM fields are mathematically related by the Fourier transformation, and the TDEM field can thus be obtained as the Fourier transformation of FDEM data. Formodeling in time-domain, we can use fast frequency-domain modeling codes and then convert the results to the time domain with a suitable numerical method. Thus, frequency-to-time transformations are of interest to EM methods, which is generally attained through fast Fourier transform. However, faster frequency-to-time transformation is required for the3D inversion of TDEM data or for the processing of vast air-borne TDEM data. The diffusion expansion method (DEM)is one of smart frequency-to-time transformation methods. In DEM, the EM field is expanded into a sequence of diffusion functions with a known frequency dependence, but with unknown diffusion-times that must be chosen based on the data to be transformed. Especially, accuracy of DEM is sensitive to the diffusion-time. In this study, we developed a method to determine the optimum range of diffusion-time values, minimizing the RMS error of the frequency-domain data approximated by the diffusion expansion. We confirmed that this method produces accurate results over a wider time range for a homogeneous half-space and two-layered model.

      • KCI등재

        잔여 파동장 분리 기법을 이용한 주파수영역 파형역산

        손우현 ( Woo Hyun Son ),편석준 ( Suk Joon Pyun ),곽상민 ( Sang Min Kwak ) 한국지구물리·물리탐사학회 2011 지구물리와 물리탐사 Vol.14 No.3

        본 논문에서는 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역 파형역산을 수행하였다. 시간영역 잔여 파동장들을 절대값의 크기에 따라 정렬하여 분류하고, 이를 여러 개의 그룹으로 분리하였다. 분리된 잔여 파동장들은 각 그룹별로 목적함수의 경사 방향을 정규화한 후 평균하기 때문에 통상적인 잔여 파동장에서 작은 크기를 가지는 파동장들을 상대적으로 강조하는 효과가 있고, 이는 파형역산 시 심부구조의 이미지 향상에 도움을 준다. 파형역산은 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역에서 수행되며, 목적함수의 경사방향은 구조보정에서 많이 쓰이는 역전파 기법을 적용하여 계산된다. 본 연구에서 제안한 알고리듬의 타당성을 확인하기 위하여 SEG/EAGE 암염 모델과 Marmousi 모델을 이용하여 파형역산을 수행하였다. 역산 결과를 통해 제안된 알고리즘이 일반적인 주파수영역 파형역산에 비해 심부구조에 대하여 향상된 결과를 제시함을 확인하였다. We perform the frequency-domain waveform inversion based on the residual-selection strategy. In the residualselection strategy, we classify time-domain residual wavefields into several groups according to the order of absolute amplitudes. Because the residual wavefields are normalized after regularization of the gradient directions within each group, the residual-selection strategy plays a role in enhancing the small-amplitude wavefields, which contributes to improving the deep parts of inverted subsurface images. After classifying residuals in the time domain, they are transformed to the frequency domain. Waveform inversion is performed in the frequency domain using the backpropagation technique which has been popularly used in reverse-time migration. The residual-selection strategy is applied to the SEG/EAGE salt and IFP Marmousi models. Numerical results show that the residual-selection strategy yields better results than the conventional frequency-domain waveform inversion.

      • KCI등재

        노후된 콘크리트 구조물의 안전도 평가를 위한 초음파기법의 주파수 및 시간영역 해석에 관한 연구

        서백수(Backsoo Suh),손권익(Kwon-Ik Sohn) 한국암반공학회 2005 터널과지하공간 Vol.15 No.5

        콘크리트 비파괴 검사를 위하여 배면공동모형과 교량공동모형에 대하여 시간영역 탐사와 주파수영역 탐사를 실시하였다. 시간영역 탐사는 초동주시 역산법을 이용하여 토모그래피를 작성하여 공동의 여부를 해석하였다. 주파수영역 탐사는 시간영역 기록을 푸리에 변환에 의한 주파수영역에서의 최대 주파수를 분석하여 해석하였다. For non-destructive testing of concrete structures, time and frequency domain method were applied to detect cavity in underground model and pier model. To interpret the measured data, time domain method made use of tomography which was completed with first arrivaltime and inversion method. In this steady, frequency domain method using Fourier transform was tried. Maximum frequency in the frequency domain was analyzed to calculate location of cavity.

      • KCI등재

        파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석

        권장섭(Kwon, Jang Sub),백인열(Paik, In Yeol),박정일(Park, Jung Il),장승필(Chang, Sung Pil) 한국해안해양공학회 2005 한국해안해양공학회 논문집 Vol.17 No.3

        부유체 및 부유식 교량과 같은 부유식 구조물이 파랑하중에 대하여 나타내는 동적거동을 주파수영역에서 구하는 연구를 수행하였다. 먼저, 부분적으로 유체에 잠겨 파랑하중의 작용을 받는 부유체에 대하여, 이의 강체운동과 관련된 동유체력계수인 부가질량, 감쇠 및 파강제력를 선형포텐셜이론과 경계요소법을 이용하여 주파수 영역에서 산정한다 다음으로,부유식 교량과 같이 앞에서 구한 부유체로 지지되며 유한요소를 이용하여 모델링 되는 부유식 구조물에 대하여, o)의 동적거동에 관한 운동방정식을 수립한다. 동유체력계수들이 주파수 의존적 성질을 가지므로 해석은 주파수영역에서 수행한다. 적용 예제로서 반구와 같은 부유체를 이용하여 해석결과를 문헌과 비교 검증한 후,부유식 교량을 지지하는 폰툰형 부유체에 대한 동유체력계수들을 구하고, 이를 이용하여 설계 파랑하중을 받는 부유식 교량의 동적 거동해석을 수행한다. 해석 예제를 주파수영역에서 해석한 결과 입사파스펙트림의 피크 주파수와 교량의 고유진동수가 가까워 응답이 증폭될 소지가 있었으나 주파수 의존적인 파강제력의 피크가 벗어난 영향으로 응답이 증폭되지 않음을 알 수 있다. Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.

      • KCI등재

        Comparison of HRV Time and Frequency Domain Features for Myocardial Ischemia Detection

        전설위(Xue-Wei Tian),장진흥(Zhen-Xing Zhang),이상홍(Sang-Hong Lee),임준식(Joon S. Lim) 한국콘텐츠학회 2011 한국콘텐츠학회논문지 Vol.11 No.3

        심박 변이도 (HRV) 분석은 심근허혈 (MI)를 평가하기 위한 편리한 도구이다. HRV에 대한 분석법은 시간 영역과 주파수 영역 분석으로 나눠질 수 있다. 본 논문은 단기간의 HRV 분석에 있어서 웨이블릿 변환을 주파수 영역 분석과 시간 영역 분석 비교하기 위하여 사용하였다. ST-T와 정상 에피소드는 각각 European ST-T 데이터베이스와 MIT-BIH Normal Sinus Rhythm 데이터베이스에서 각각 수집되었다. 한 에피소드는 32개 연속하는 RR 간격으로 나눠질 수 있다. 18개 HRV 특징은 시간과 주파수 영역 분석을 통하여 추출된다. 가종 퍼지소속함수 신경망 (NEWFM)은 추출된 18개의 특징을 이용하여 심근허혈을 진단하였다. 결과는 보여주는 평균 정확도로부터 시간영역과 주파수영역의 특징은 각각 75.29%와 80.93%이다. Heart Rate Variability (HRV) analysis is a convenient tool to assess Myocardial Ischemia (MI). The analysis methods of HRV can be divided into time domain and frequency domain analysis. This paper uses wavelet transform as frequency domain analysis in contrast to time domain analysis in short term HRV analysis. ST-T and normal episodes are collected from the European ST-T database and the MIT-BIH Normal Sinus Rhythm database, respectively. An episode can be divided into several segments, each of which is formed by 32 successive RR intervals. Eighteen HRV features are extracted from each segment by the time and frequency domain analysis. To diagnose MI, the Neural Network with Weighted Fuzzy Membership functions (NEWFM) is used with the extracted 18 features. The results show that the average accuracy from time and frequency domain features is 75.29% and 80.93%, respectively.

      • KCI등재

        탄성파의 매질 내 이동속도 산정방법 비교

        김태식(Taesik Kim) 한국지반환경공학회 2014 한국지반환경공학회논문집 Vol.15 No.5

        탄성파는 지반 및 지반환경 관련 과업에서 다양한 형태로 활용되어 왔다. 일반적으로는 현장에서 탄성파 탐사를 수행하여 시추조사와 더불어 지반의 물성값을 평가하는 목적으로 사용되고 있으며, 지하공동의 위치파악 등에도 사용되고 있다. 환경복원이 필요한 버려진 부지에 매립된 유류 저장시설의 위치 파악 등 지반환경공학과 관련하여서도 탄성파의 활용은 활발히 이루어지고 있다. 또한 지반의 미소변형률 구간에서의 지반 거동 분석에도 탄성파를 활용하고 있다. 탄성파의 매질 내 이동속도가 주요 인자로서 활용되고 있는데, 이는 시간 영역과 주파수 영역에서 산정할 수 있다. 시간 영역에서의 탄성파의 이동속도 평가방법은 동일 위상을 갖는 특정한 점들의 시간차이를 분석하는 방법, 상호상관법을 활용한 방법으로 나뉠 수 있다. 주파수 영역에서의 탄성파의 이동속도는 진원과 수신점에서의 입력 파형과 수신파형의 위상 차이를 분석하여 산정할 수 있다. 본 연구에서는 시카고 지역에서 채취한 불교란 빙하퇴적 점성토 시료에 벤더 엘리먼트를 이용한 탄성파 시험을 실시, 동일한 탄성파에 대해 여러 가지 산정 방법을 적용하여 탄성파의 이동속도를 분석하였다. 시간영역에서 탄성파의 이동속도를 분석한 결과 데이터로거의 표본화 주파수에 영향을 크게 받는 것으로 분석되었으며, 신호에 포함되어있는 노이즈 및 수신파형의 요철 특성으로 인하여 같은 위상을 갖는 점을 정확히찾는 것은 불가능하였다. 상호상관법으로 분석한 경우도 입력 파형과 수신파형의 주기의 차이로 인해 탄성파의 정확한 이동속도를 산정하는 것은 불가능하였다. 주파수 영역에서의 이동속도 산정의 경우 영채우기를 통해 주파수 분해능을 개선시킬 수 있어 데이터로 거의 표본화 주파수에 영향을 받지 않았다. 과도파 사용으로 인한 지배주파수가 유일 값이 아닌 범위로 나타나는 단점이 있었으나, 지배주파수 범위 내의 탄성파의 이동속도의 범위는 시간 영역에서 산정한 값보다 정밀한 것으로 나타났다. In situ investigations and laboratory tests using elastic wave have become popular in geotechnical and geoenvironmental engineering. Propagation velocity of elastic wave is the key index to evaluate the ground characteristics. To evaluate this, various methods were used in both time domain and frequency domain. In time domain, the travel time can be found from the two points that have the same phase such as peaks or first rises. Cross-correlation can also be used in time domain by evaluating the time shift amount that makes the product of signals of input and received waveforms maximum. In frequency domain, wave propagation velocity can be evaluated by computing the phase differences between the source and received waves. In this study, wave propagation velocity evaluated by the methods listed above were compared. Bender element tests were conducted on the specimens cut from the undisturbed hand-cut block samples obtained from Block 37 excavation site in Chicago, IL, US. The evaluation methods in time domain provides relatively wide range of wave propagation velocities due to the noise in signals and the sampling frequency of data logger. Frequency domain approach provides relatively accurate wave propagation velocities and is irrelevant to the sampling frequency of data logger.

      • KCI등재후보

        변동풍속의 공간분포와 비정상공기력의 주파수 의존성을 동시에 고려한 사장교의 시간영역 공탄성 해석

        김호경,안동희,서정인 한국풍공학회 2009 한국풍공학회지 Vol.13 No.2

        A time-domain analysis procedure is proposed for the estimation of aeroelastic responses of a cable-stayed bridge due to up-coming wind velocity fluctuation. Two important issues in a time-domain analysis are considered. One of the issues is a spatially correlated wind velocity fluctuation that is generated artificially, and the other is a frequency-dependency of unsteady aeroelastic force. Even though these two issues were investigated separately in previous papers, this study is intended to integrate both issues so as to produce much closer results of time domain buffeting analysis in estimating bridge responses. The time-domain responses are calculated for an actual bridge and compared with those by the frequency-domain analysis for the verification of the proposed method. The proposed time-domain platform is expected to be applied to vibration controls and/or nonlinear aeroelastic analysis for long-span bridges. 변동풍속 하에서 사장교의 공탄성 응답을 평가하기 위한 시간영역 해석기법을 제시하였다. 시간영역 해석법에서 중요하게 다루고 있는 두 가지 사항을 동시에 고려하였다. 첫째는 인공적으로 생성된 변동풍속의 공간분포 특성이며 둘째는 비정상 공기력의 주파수 의존성이다. 이 두 특성은 기존 논문에서도 개별적으로 검토된 바 있지만, 본 연구에서는 이를 동시에 고려함으로써 기존 개별 논문에 비하여 시간영역 공탄성 해석 결과가 실교량의 거동을 보다 정확히 구현할 수 있도록 하였다. 실교량을 대상으로 이와 같이 두 특성을 고려한 시간영역 해석결과를 도출한 뒤, 이 두 특성을 비교적 쉽게 반영할 수 있는 주파수영역 해석법의 결과와 비교함으로써 제안된 공탄성 해석법이 타당한 결과를 줌을 입증하였다. 이를 통하여 향후 장대교량의 제진 설계나 비선형 공탄성해석에 활용될 수 있는 시간영역 해석법을 제시하였다.

      • 파력발전 비대칭 로터의 주파수영역 발전성능 평가

        하윤진(Yoon-Jin Ha),박지용(Ji Yong Park),노찬(Roh Chan),신승호(Seung Ho Shin) 한국해양환경·에너지학회 2019 한국해양환경·에너지학회 학술대회논문집 Vol.2019 No.11

        본 연구에서는 주파수영역해석기법을 이용하여 비대칭 로터에 대한 운동해석을 수행하였다. 주파수영역해석결과는 기존의 모형시험결과와 직접 비교하였으며, 그 결과는 매우 유사함을 확인하였다. 본 로터의 경우에는 공지 파 주기 근처에서 가장 큰 종동요 운동을 보이며, 그리고 종동요 운동에 대하여 최적 PTO 감쇠계수를 추출하여 보았다. 그 결과로부터 평균발전량을 추정하였으며, 주파수영역해석기법을 이용한 발전량 추정의 기본 자료로 활용하고자 한다. In this study, a frequency domain analysis is carried out to investigate motion characteristics of rotor model. The result of the frequency domain analysis were directly compared with the existing model test results. The frequency domain analysis result are good agreement with the model test results. The pitch motion of the rotor model in resonance period is relatively larger than the pitch motions in other wave periods, and the optimal BPTO dampings are estimated from the frequency domain analysis. From the results, the absorbed powers are estimated from the estimated BPTO dampings. The results of this study could be used as the fundamental data to estimate the absorbed power using frequency domain analysis.

      • 비정상 공기력의 주파수 의존성을 고려한 사장교의 시간영역 버페팅 해석

        장석(Chang Suk),김호경(Kim Ho-Kyung),권순덕(Kwon Soon-Duck),장승필(Chang Sung-Pil) 대한토목학회 2007 대한토목학회논문집 A Vol.27 No.6A

        사장교의 기하비선형 효과가 버페팅 응답에 미치는 영향을 평가하기 위하여 비선형 시간영역 버페팅해석을 수행하였다. 교량의 진동에 의해 유발되는 자발진동하중은 거더의 진동 주파수 함수로 표현되므로 주파수영역 버페팅해석법에서는 이를 고려하기 수월하지만 시간영역해석법에서는 별도의 기법이 필요하다. 시간영역에서도 비정상 공기력의 주파수 의존성을 고려하기 위하여 플러터계수를 유리함수로 근사한 후 합성적분법을 수행하여 교량의 응답을 산정하였다. 실교량 예제를 통하여 비정상 공기력의 주파수 의존성 고려여부에 따른 해석결과의 차이를 제시하였으며 또한 기하비선형성이 응답에 미치는 영향도 평가하였다. 풍속이 증가함에 따라 비정상 공기력의 주파수 의존성과 교량의 기하비선형성을 고려한 해석결과가 그렇지 않은 경우에 비하여 구별될 수 있을 만큼 차이가 발생하게 됨을 확인하였다. A time-domain nonlinear buffeting analysis procedure is presented to estimate geometrical nonlinear effects of a cable-stayed bridge on buffeting responses. Since the self-excited forces are formulated in terms of motional frequency of a girder, a linear frequency-domain approach is straightforward to consider the frequency-dependency of the unsteady aerodynamic force. A time-domain approach, however, requires much complicated techniques and procedures. The current nonlinear buffeting analysis procedure approximated flutter derivatives as rational functions and then the unsteady forces are calculated through a convolution integral. An actual cable-stayed bridge was numerically modeled and a series of buffeting analysis were performed to estimate the effects of the frequency-dependency of unsteady aerodynamic forces and the geometrical nonlinearity of cable-stayed bridge structure on buffeting responses of girders. The consideration of these two properties in buffeting analysis was found to change the overall magnitude of buffeting responses of the examined bridge to a certain extent as mean wind velocity increased.

      • KCI등재

        비선형 동적 시스템의 파라미터 산정을 위한 주파수 영역 볼테라 모델의 이용

        백인열,권장섭 한국지진공학회 2005 한국지진공학회논문집 Vol.9 No.3

        비선형 함수로 모델링되는 동적 시스템의 비선형 파라미터를 결정하기 위하여 주파수 영역 볼테라 모델을 적용하는 연구를 수행하였다. 시간영역의 1차, 2차, 3차 전달함수에 해당하는 주파수 영역의 볼테라 핵함수를 비선형 파라미터 산정 과정에 3차 비선형 항까지 포함시켰다. Schetzen의 방법으로 시스템의 비선형 미분방정식에 적합한 볼테라 급수 표현식을 정하고, 이로부터 유도되는 비선형 전달함수를 입력 출력 관계식에 사용하였다. 관찰된 입력을 비선형 주파수 영역 모델에 대입하여 계산한 출력과 관찰된 출력의 차이로 오차를 정의한 후 오차를 최소화 시키는 시스템 파라미터의 값을 구하였다. 예제를 통하여 선형 주파수 구간 뿐만 아니라 2차 혹은 3차 비선형이 지배적인 주파수 범위 대에서 볼테라 모델이 충분한 정확성과 수렴성을 가지며 인식된 파라미터는 실제 값과 잘 일치함을 확인할 수 있었다. Frequency domain Volterra model is applied to nonlinear parameter identification procedure for dynamic systems modeled by nonlinear function. The frequency domain Volterra kernels, which correspond io linear, quadratic, and cubic transfer functions in lime domain, are incorporated in nonlinear parametric identification procedure. The nonlinear transfer functions, which can be derived from the Volterra series representation of the nonlinear differential equation of the system by Schetzen's method(1980), are directly used for modeling input output relation. The error is defined by the difference between the observed output and the estimated output which is calculated by substituting the observed input to nonlinear frequency domain model. The system parameters are searched by minimizing the error. Volterra model guarantees enough accuracy and convergence and the estimated coefficients have a good agreement with their actual values not only in the linear frequency region but also in the legion where the 2^{nd}\;or\;3^{rd} order nonlinearity is dominant.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼