RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재SCOPUS
      • KCI등재

        Spindle epithelial tumor with thymus-like differentiation of the thyroid in a 70-year-old man

        Sunhye Lee,Yon Seon Kim,Jeong Hyeon Lee,Sung Ho Hwang,Yu-Hwan Oh,Byung Kyun Ko,Soo-Youn Ham 대한외과학회 2018 Annals of Surgical Treatment and Research(ASRT) Vol.94 No.6

        Spindle epithelial tumor with thymus-like differentiation (SETTLE) is a very rare tumor of the thyroid gland mostly occurring in young patients. The imaging findings of SETTLE tumors are yet to be defined. However, they are usually described as well-defined heterogeneously enhanced masses on CT scan. The current case has the potential growth as compared with a 2009 chest radiography. We took into account the possibility of SETTLE in the case of a bulky mass in patients over 70 years old, particularly in the lower neck. Herein, we report a case of the oldest patient so far. The patient underwent a right lobectomy of the thyroid and mass excision. Follow-up CT scans after 6 months revealed no local recurrence. Surgery is the gold standard treatment for SETTLE. Chemotherapy and radiotherapy could be another possible option for patients with advanced stage SETTLE.

      • KCI등재

        Supplementation of non‑fermented and fermented goji berry (Lycium barbarum) improves hepatic function and corresponding lipid metabolism via their anti‑inflammatory and antioxidant properties in high fat‑fed rats

        Lee Sunhye,Jeong Soyeon,Park Yeongju,Seo Hyunji,You Cheongbin,Hwang Unsik,Park Hoon,Suh Hee-jae 한국응용생명화학회 2021 Applied Biological Chemistry (Appl Biol Chem) Vol.64 No.5

        Development of obesity is associated with excessive fat accumulation and oxidative stress along with chronic inflammation. Goji berries (Lycium barbarum) are high in polyphenolic compounds and have anti-inflammatory, anti-oxidant, and hypolipidemic properties that may alleviate the pathogenesis of obesity and related metabolic complications. Thus, the aim of this study was to investigate potential metabolic benefits of GB supplementation against high fat (HF) diet-induced obesity and its comorbidities in HF diet-fed rats (male Sprague–Dawley, n = 8/group, 6 weeks old). We also sought to examine the potential metabolic benefits of fermented GB (FGB) with L. plantarum CB3 and possible distinctions in the degree and/or mechanism of action compared to GB. GB and FGB supplementation suppressed the gene expression of inflammation indices at the local (adipose tissues) and systemic (liver) levels. In addition, GB and FGB supplementation upregulated the gene expression of antioxidant enzymes compared to the HF and/or even low fat (LF) group with more remarkable antioxidant effects by GB supplementation. Also, GB and FGB supplementation protected from HF-induced damages of the liver and dyslipidemia. In conclusion, we demonstrated that GB and FGB supplementation protected from HF-induced metabolic complications primarily by improving hepatic function and corresponding lipid metabolism via their anti-inflammatory and antioxidant properties. To our knowledge, this is the first in vivo study confirming metabolic benefits of GB in a fermented form. Thus, these findings support the potential application of both GB and FGB to ameliorate obesity-associated metabolic abnormalities.

      • KCI등재

        한국형 재활환자분류체계 버전 1.0 개발

        황수진 ( Soojin Hwang ),김애련 ( Aeryun Kim ),문선혜 ( Sunhye Moon ),김지희 ( Jihee Kim ),김진휘 ( Jinhwi Kim ),하영혜 ( Younghea Ha ),양옥영 ( Okyoung Yang ) 한국보건행정학회 2016 보건행정학회지 Vol.26 No.4

        Background: Rehabilitations in subacute phase are different from acute treatments regarding the characteristics and required resource consumption of the treatments. Lack of accuracy and validity of the Korean Diagnosis Related Group and Korean Out-Patient Group for the acute patients as the case-mix and payment tool for rehabilitation inpatients have been problematic issues. The objective of the study was to develop the Korean Rehabilitation Patient Group (KRPG) reflecting the characteristics of rehabilitation inpatients. Methods: As a retrospective medical record survey regarding rehabilitation inpatients, 4,207 episodes were collected through 42 hospitals. Considering the opinions of clinical experts and the decision-tree analysis, the variables for the KRPG system demonstrating the characteristics of rehabilitation inpatients were derived, and the splitting standards of the relevant variables were also set. Using the derived variables, we have drawn the rehabilitation inpatient classification model reflecting the clinical situation of Korea. The performance evaluation was conducted on the KRPG system. Results: The KRPG was targeted at the inpatients with brain or spinal cord injury. The etiologic disease, functional status (cognitive function, activity of daily living, muscle strength, spasticity, level and grade of spinal cord injury), and the patient`s age were the variables in the rehabilitation patients. The algorithm of KRPG system after applying the derived variables and total 204 rehabilitation patient groups were developed. The KRPG explained 11.8% of variance in charge for rehabilitation inpatients. It also explained 13.8% of variance in length of stay for them. Conclusion: The KRPG version 1.0 reflecting the clinical characteristics of rehabilitation inpatients was classified as 204 groups.

      • MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1) Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs) Transplanted into Infarcted Heart

        Lee, Chang Youn,Shin, Sunhye,Lee, Jiyun,Seo, Hyang-Hee,Lim, Kyu Hee,Kim, Hyemin,Choi, Jung-Won,Kim, Sang Woo,Lee, Seahyung,Lim, Soyeon,Hwang, Ki-Chul MDPI 2016 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.17 No.10

        <P>Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.</P>

      • SCISCIESCOPUS

        Rapid Induction of Osteogenic Markers in Mesenchymal Stem Cells by Adipose-Derived Stromal Vascular Fraction Cells

        Choi, Jung-Won,Shin, Sunhye,Lee, Chang Youn,Lee, Jiyun,Seo, Hyang-Hee,Lim, Soyeon,Lee, Seahyoung,Kim, Il-Kwon,Lee, Hoon-Bum,Kim, Sang Woo,Hwang, Ki-Chul S. KARGER AG 2017 CELLULAR PHYSIOLOGY AND BIOCHEMISTRY Vol.44 No.1

        <P>Background/Aims: Stromal vascular fraction (SVF) cells are a mixed cell population, and their regenerative capacity has been validated in various therapeutic models. The purpose of this study was to investigate the regenerative mechanisms utilized by implanted SVF cells. Using an in vitro co-culture system, we sought to determine whether SVF implantation into impaired tissue affects endogenous mesenchymal stem cell (MSC) differentiation; MSCs can differentiate into a variety of cell types, and they have a strong regenerative capacity despite their low numbers in impaired tissue. Methods: Adipose-derived SVF cells obtained from four donors were co-cultured with bone marrow-derived MSCs, and the differential expression of osteogenic markers and osteogenic differentiation inducers over time was analyzed in mono-cultured MSCs and MSCs co-cultured with SVF cells. Results: The co-cultivation of MSCs with SVF cells significantly and mutually induced the expression of osteogenic-specific markers via paracrine and/or autocrine regulation but did not induce adipocyte, chondrocyte or myoblast marker expression. More surprisingly, subsequent osteogenesis and/or comparable effects were rapidly induced within 48 h. Conclusion: To the best of our knowledge, this is the first study in which osteogenesis and/or comparable effects were rapidly induced in bone marrow-derived MSCs and adipose-derived SVF cells through co-cultivation. Our findings suggest that the positive effects of SVF implantation into impaired bone may be attributed to the rapid induction of MSC osteogenesis, and the transplantation of co-cultured and preconditioned SVF cells and/or MSCs may be more effective than the transplantation of untreated cells for the treatment of bone defects. (c) 2017 The Author(s) Published by S. Karger AG, Basel</P>

      • KCI등재

        Therapeutic Effect of IL1β Priming Tonsil Derived-Mesenchymal Stem Cells in Osteoporosis

        유민주,Cho Sungkuk,Shin Sunhye,Kim Jung-Mi,박현경,Cho Sungyoo,Hwang Yu Kyeong,박대휘 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.5

        Background: Stem cell therapies can be a new therapeutic strategy that may rebalance anabolic and anti-resorptive effects in osteoporosis patients. Tonsil-derived mesenchymal stem cells (TMSCs) can be an alternative therapeutic source for chronic degenerative diseases including osteoporosis. MSCs acquire immune regulatory function under the inflammatory cytokines. Since interleukin (IL) 1β is known to be one of inflammatory cytokines involved in osteoporosis progression, treatment of IL1β with TMSCs may enhance immunomodulatory function and therapeutic effects of TMSCs in osteoporosis. Methods: For IL1β priming, TMSCs were cultured in the presence of the medium containing IL1β for 1 day. Characteristics of IL1β priming TMSCs such as multipotent differentiation properties, anti-inflammatory potential, and suppression of osteoclast differentiation were assessed in vitro. For in vivo efficacy study, IL1β priming TMSCs were intravenously infused twice with ovariectomized (OVX) osteoporosis mouse model, and blood serum and bone parameters from micro computed tomography images were analyzed. Results: IL1β priming TMSCs had an enhanced osteogenic differentiation and secreted factors that regulate both osteoclastogenesis and osteoblastogenesis. IL1β priming TMSCs also suppressed proliferation of peripheral blood mononuclear cells (PBMCs) and decreased expression of Receptor activator of nuclear factor kappa-Β ligand (RANKL) in PHA-stimulated PBMCs. Furthermore, osteoclast specific genes such as Nuclear factor of activated T cells c1 (NFATc1) were effectively down regulated when co-cultured with IL1β priming TMSCs in RANKL induced osteoclasts. In OVX mice, IL1β priming TMSCs induced low level of serum RANKL/osteoprotegerin (OPG) ratio on the first day of the last administration. Four weeks after the last administration, bone mineral density and serum Gla-osteocalcin were increased in IL1β priming TMSC-treated OVX mice. Furthermore, bone formation and bone resorption markers that had been decreased in OVX mice with low calcium diet were recovered by infusion of IL1β priming TMSCs. Conclusion: IL1β priming can endow constant therapeutic efficacy with TMSCs, which may contribute to improve bone density and maintain bone homeostasis in postmenopausal osteoporosis. Therefore, IL1β priming TMSCs can be a new therapeutic option for treating postmenopausal osteoporosis. Background: Stem cell therapies can be a new therapeutic strategy that may rebalance anabolic and anti-resorptive effects in osteoporosis patients. Tonsil-derived mesenchymal stem cells (TMSCs) can be an alternative therapeutic source for chronic degenerative diseases including osteoporosis. MSCs acquire immune regulatory function under the inflammatory cytokines. Since interleukin (IL) 1β is known to be one of inflammatory cytokines involved in osteoporosis progression, treatment of IL1β with TMSCs may enhance immunomodulatory function and therapeutic effects of TMSCs in osteoporosis. Methods: For IL1β priming, TMSCs were cultured in the presence of the medium containing IL1β for 1 day. Characteristics of IL1β priming TMSCs such as multipotent differentiation properties, anti-inflammatory potential, and suppression of osteoclast differentiation were assessed in vitro. For in vivo efficacy study, IL1β priming TMSCs were intravenously infused twice with ovariectomized (OVX) osteoporosis mouse model, and blood serum and bone parameters from micro computed tomography images were analyzed. Results: IL1β priming TMSCs had an enhanced osteogenic differentiation and secreted factors that regulate both osteoclastogenesis and osteoblastogenesis. IL1β priming TMSCs also suppressed proliferation of peripheral blood mononuclear cells (PBMCs) and decreased expression of Receptor activator of nuclear factor kappa-Β ligand (RANKL) in PHA-stimulated PBMCs. Furthermore, osteoclast specific genes such as Nuclear factor of activated T cells c1 (NFATc1) were effectively down regulated when co-cultured with IL1β priming TMSCs in RANKL induced osteoclasts. In OVX mice, IL1β priming TMSCs induced low level of serum RANKL/osteoprotegerin (OPG) ratio on the first day of the last administration. Four weeks after the last administration, bone mineral density and serum Gla-osteocalcin were increased in IL1β priming TMSC-treated OVX mice. Furthermore, bone formation and bone resorption markers that had been decreased in OVX mice with low calcium diet were recovered by infusion of IL1β priming TMSCs. Conclusion: IL1β priming can endow constant therapeutic efficacy with TMSCs, which may contribute to improve bone density and maintain bone homeostasis in postmenopausal osteoporosis. Therefore, IL1β priming TMSCs can be a new therapeutic option for treating postmenopausal osteoporosis.

      • Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride–Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes

        Chun, Jinyoung,Jo, Changshin,Sahgong, Sunhye,Kim, Min Gyu,Lim, Eunho,Kim, Dong Hyeon,Hwang, Jongkook,Kang, Eunae,Ryu, Keun Ah,Jung, Yoon Seok,Kim, Youngsik,Lee, Jinwoo American Chemical Society 2016 ACS APPLIED MATERIALS & INTERFACES Vol.8 No.51

        <P>Metal fluorides (MFx) are one of the most attractive cathode candidates for Li ion batteries (LIBs) due to their high conversion potentials with large capacities. However, only a limited number of synthetic methods, generally involving highly toxic or inaccessible reagents, currently exist, which has made it difficult to produce well-designed nanostructures suitable for cathodes; consequently, harnessing their potential cathodic properties has been a challenge. Herein, we report a new bottom-up synthetic method utilizing ammonium fluoride (NH4F) for the preparation of anhydrous MFx (CuF2, FeF3, and CoF2)/mesoporous carbon (MSU-F-C) nanocomposites, whereby a series of metal precursor nanoparticles preconfined in mesoporous carbon were readily converted to anhydrous MFx through simple heat treatment with NH4F under solventless conditions. We demonstrate the versatility, lower toxicity, and efficiency of this synthetic method and, using XRD analysis, propose a mechanism for the reaction. All MFx/MSU-F-C prepared in this study exhibited superior electrochemical performances, through conversion reactions, as the cathode for LIBs. In particular, FeF3/MSU-F-C maintained a capacity of 650 mAh g(FeF3)(-1) across 50 cycles, which is similar to 90% of its initial capacity. We expect that this facile synthesis method will trigger further research into the development of various nanostructured MFx for use in energy storage and other applications.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼