RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Hybrid of Smartphone Camera and Basestation Wide-area Indoor Positioning Method

        ( Jichao Jiao ),( Zhongliang Deng ),( Lianming Xu ),( Fei Li ) 한국인터넷정보학회 2016 KSII Transactions on Internet and Information Syst Vol.10 No.2

        Indoor positioning is considered an enabler for a variety of applications, the demand for an indoor positioning service has also been accelerated. That is because that people spend most of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is an efficient platform for navigation and positioning. However, for high accuracy indoor positioning by using a smartphone, there are two constraints that includes: (1) limited computational and memory resources of smartphone; (2) users` moving in large buildings. To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning information includes horizontal and altitude information for assisting smartphone camera-based positioning. Moreover, a unified representation model of image features under variety of scenarios whose name is FAST-SURF is established for computing the fine location. Finally, an optimization marginalized particle filter is proposed for fusing the positioning information from TC-OFDM and images. The experimental result shows that the wide location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to the WiFi-based and ibeacon-based positioning methods, our method is powerful while being easy to be deployed and optimized.

      • A Classification Techniques for Quality Improvement

        Xu, Jichao,Liu, Yumin,Li, Zhang 한국품질경영학회 2001 The Asian Journal on Quality Vol.2 No.2

        As we know, the quality of processes is technically depicted by variation, a product or process with the best quality must naturally require the variation as less as possible. The variation is usually reduced with many ways, say, by adjusting parameters settings under robust design with many turns expensive experiments. So ones are trying to reach the robustness by detecting cheap and simple methods. In this paper, a both practical and simple technique for quality improvement, namely reducing the variation, by data classification is studied. First, all possible system factors are included, which may dominate the variation law. And then we make use of the past observations and their classification as well as boxplot charts to find out the internal rule between the variation and the system factor. Next, adjust the location of the system factor according to the rule so that the variation could, to some extent, be lessened. Finally, two typical quality improvement cases based on data classification are presented.

      • KCI등재

        Investigation of Hetero - Material - Gate in CNTFETs for Ultra Low Power Circuits

        Wei Wang,Min Xu,Jichao Liu,Na Li,Ting Zhang,Sitao Jiang,Lu Zhang,Huan Wang,Jian Gao 대한전자공학회 2015 Journal of semiconductor technology and science Vol.15 No.1

        An extensive investigation of the influence of gate engineering on the CNTFET switching, high frequency and circuit level performance has been carried out. At device level, the effects of gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. It is revealed that hetero - material - gate CNTFET(HMG - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, and is more suitable for use in low power and high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the performance parameters of circuits have been calculated and the optimum combinations of ФM1/ФM2/ФM3 have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product(PDP). We show that, compared to a traditional CNTFET - based circuit, the one based on HMG - CNTFET has a significantly better performance (SNM, energy, PDP). In addition, results also illustrate that HMG - CNTFET circuits have a consistent trend in delay, power, and PDP with respect to the transistor size, indicating that gate engineering of CNTFETs is a promising technology. Our results may be useful for designing and optimizing CNTFET devices and circuits.

      • Resistance Function of Rice Lipid Transfer Protein LTP110

        Ge, Xiaochun,Chen, Jichao,Li, Ning,Lin, Yi,Sun, Chongrong,Cao, Kaiming Korean Society for Biochemistry and Molecular Biol 2003 Journal of biochemistry and molecular biology Vol.36 No.6

        Abstract Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.

      • KCI등재

        Initial selection of groove location combination for multi-groove casing treatments

        Juan Du,Lipeng Gao,Jichao Li,Feng Lin,Jingyi Chen 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.2

        Stall margin improvement (SMI) curve is a function of a single groove location for a low-speed axial compressor and is investigated numerically and experimentally in this paper. SMI curve illustrates that good grooves are located in a fairly wide region approximately from 30% C ax to 80% C ax aft of the rotor leading edge. The narrow region that contains bad grooves is near 20% C ax aft of the rotor leading edge. The initial selection of groove location combination for multi-groove casing treatments is proposed based on the SMI and efficiency improvement data generated by a series of single-groove and multi-groove casing treatments. The grooves should be set in the “wide region” of the SMI curve. The grooves located near the “narrow region” and the rotor trailing edge should be avoided. The “narrow region” can be identified by the axial momentum distribution of the tip leakage flow or the circumferentially averaged axial shear stress on the casing using the simulation results of the smooth casing at the near-stall point.

      • KCI등재

        Multifunctional nanozyme‑reinforced copper‑coordination polymer nanoparticles for drug‑resistance bacteria extinction and diabetic wound healing

        Jiahui Zhao,Tengfei Xu,Jichao Sun,Haitao Yuan,Mengyun Hou,Zhijie Li,Jigang Wang,Zhen Liang 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background Drug-resistant bacterial infections in chronic wounds are a persistent issue, as they are resistant to antibiotics and can cause excessive inflammation due to generation of reactive oxygen species (ROS). An effective solution would be to not only combat bacterial infections but also scavenge ROS to relieve inflammation at the wound site. Scaffolds with antioxidant properties are attractive for their ability to scavenge ROS, and there is medical demand in developing antioxidant enzyme-mimicking nanomaterials for wound healing. Methods In this study, we fabricated copper-coordination polymer nanoparticles (Cu-CPNs) through a self-assembly process. Furthermore, ε-polylysine (EPL), an antibacterial and cationic polymer, was integrated into the Cu-CPNs structure through a simple one-pot self-assembly process without sacrificing the glutathione peroxidase (GPx) and superoxide dismutase (SOD)-mimicking activity of Cu-CPNs. Results The resulting Cu-CPNs exhibit excellent antioxidant propertiesin mimicking the activity of glutathione peroxidase and superoxide dismutase and allowing them to effectively scavenge harmful ROS produced in wound sites. The in vitro experiments showed that the resulting Cu-CPNs@EPL complex have superior antioxidant properties and antibacterial effects. Bacterial metabolic analysis revealed that the complex mainly affects the cell membrane integrity and nucleic acid synthesis that leads to bacterial death. Conclusions The Cu-CPNs@EPL complex has impressive antioxidant properties and antibacterial effects, making it a promising solution for treating drug-resistant bacterial infections in chronic wounds. The complex’s ability to neutralize multiple ROS and reduce ROS-induced inflammation can help relieve inflammation at the wound site.

      • SCIESCOPUSKCI등재

        Investigation of Hetero - Material - Gate in CNTFETs for Ultra Low Power Circuits

        Wang, Wei,Xu, Min,Liu, Jichao,Li, Na,Zhang, Ting,Jiang, Sitao,Zhang, Lu,Wang, Huan,Gao, Jian The Institute of Electronics and Information Engin 2015 Journal of semiconductor technology and science Vol.15 No.1

        An extensive investigation of the influence of gate engineering on the CNTFET switching, high frequency and circuit level performance has been carried out. At device level, the effects of gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. It is revealed that hetero - material - gate CNTFET(HMG - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, and is more suitable for use in low power and high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the performance parameters of circuits have been calculated and the optimum combinations of ${\Phi}_{M1}/{\Phi}_{M2}/{\Phi}_{M3}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product(PDP). We show that, compared to a traditional CNTFET - based circuit, the one based on HMG - CNTFET has a significantly better performance (SNM, energy, PDP). In addition, results also illustrate that HMG - CNTFET circuits have a consistent trend in delay, power, and PDP with respect to the transistor size, indicating that gate engineering of CNTFETs is a promising technology. Our results may be useful for designing and optimizing CNTFET devices and circuits.

      • KCI등재

        Sr-doping enhanced electrical transport and thermionic emission of single crystal 12CaO·7Al2O3 electride

        Xin Zhang,Qi Feng,Jiping Zhao,Hong-liang Liu,Jichao Li,Yixin Xiao,Fan Li,Qingmei Lu 한국물리학회 2020 Current Applied Physics Vol.20 No.1

        Sr-doped single crystals (C1-xSx)12A7:e− (x=0, 0.01, 0.02, 0.03) were successfully fabricated by floating zone method. It is found that Sr-doping decreases the reduction time from 30 h to 20 h. The maximum emission current of (C1-xSx)12A7:e− is greatly improved by 50% than that of the un-doped. The DFT calculations show Srdoping in C12A7 contributed to the free O2− in the cages spread out, leading to a short reduction time; increase the “window” between two adjacent cages that is conducive to the electrons in cages to escape. And the work function of the (C1-xSx)12A7:e− is lower than that of C12A7:e−.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼