RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Interaction between Brucella melitensis 16M and small ubiquitin-related modifier 1 and E2 conjugating enzyme 9 in mouse RAW264.7 macrophages

        Jihai Yi,Yueli Wang,Qifeng Li,Huan Zhang,Zhiran Shao,XiaoYu Deng,Jinke He,Chencheng Xiao,Zhen Wang,Yong Wang,Chuangfu Chen 대한수의학회 2019 Journal of Veterinary Science Vol.20 No.5

        Brucella is an intracellular pathogen that invades a host and settles in its immune cells; however, the mechanism of its intracellular survival is unclear. Modification of small ubiquitin-related modifier (SUMO) occurs in many cellular activities. E2 conjugating enzyme 9 (Ubc9) is the only reported ubiquitin-conjugating enzyme that links the SUMO molecule with a target protein. Brucella's intracellular survival mechanism has not been studied with respect to SUMO-related proteins and Ubc9. Therefore, to investigate the relationship between Brucella melitensis 16M and SUMO, we constructed plasmids and cells lines suitable for overexpression and knockdown of SUMO1 and Ubc9 genes. Brucella 16M activated SUMO1/Ubc9 expression in a time-dependent manner, and Brucella 16M intracellular survival was inhibited by SUMO1/Ubc9 overexpression and promoted by SUMO1/Ubc9 depletion. In macrophages, Brucella 16M-dependent apoptosis and immune factors were induced by SUMO1/Ubc9 overexpression and restricted by SUMO1/Ubc9 depletion. We noted no effect on the expressions of SUMO1 and Ubc9 in B. melitensis 16M lipopolysaccharide-prestimulated mouse RAW264.7 macrophages. Additionally, intracellular survival of the 16MΔVirB2 mutant was lower than that of Brucella 16M (p < 0.05). VirB2 can affect expression levels of Ubc9, thereby increasing intracellular survival of Brucella in macrophages at the late stage of infection. Collectively, our results demonstrate that B. melitensis 16M may use the VirB IV secretion system of Brucella to interact with SUMO-related proteins during infection of host cells, which interferes with SUMO function and promotes pathogen survival in host cells.

      • KCI등재

        Babeisa duncani infection alters gut microbiota profile in hamsters

        Shangdi Zhang,Jinming Wang,Xiaoyun Li,Yanbo Wang,Yueli Nian,Chongge You,Dekui Zhang,Guiquan Guan 대한기생충학ㆍ열대의학회 2023 The Korean Journal of Parasitology Vol.61 No.1

        The genus Babesia includes parasites that can induce human and animal babesiosis, which are common in tropical and subtropical regions of the world. The gut microbiota has not been examined in hamsters infected by Babesia duncani. Red blood cells infected with B. duncani were injected into hamsters through intraperitoneal route. To evaluate the changes in gut microbiota, DNAs were extracted from small intestinal contents, acquired from hamsters during disease development. Then, the V4 region of the 16S rRNA gene of bacteria was sequenced using the Illumina sequencing platform. Gut microbiota alternation and composition were assessed according to the sequencing data, which were clustered with >97.0% sequence similarity to create amplicon sequence variants (ASVs). Bacteroidetes and Firmicutes were made up of the major components of the gut microbiota in all samples. The abundance of Bacteroidetes elevated after B. duncani infection than the B. duncani-free group, while Firmicutes and Desulfobacterota declined. Alpha diversity analysis demonstrated that the shown ASVs were substantially decreased in the highest parasitemia group than B. duncani-free and lower parasitemia groups. Potential biomarkers were discovered by Linear discriminant analysis Effect Size (LEfSe) analysis, which demonstrated that several bacterial families (including Muribaculaceae, Desulfovibrionaceae, Oscillospiraceae, Helicobacteraceae, Clostridia UGG014, Desulfovibrionaceae, and Lachnospiraceae) were potential biomarkers in B. duncani-infected hamsters. This research demonstrated that B. duncani infectious can modify the gut microbiota of hamsters.

      • KCI등재

        Experimental Study on Reinforcement and Chloride Extraction of Concrete Column with MPC-CFRP Composite Anode

        Yue Li,Xiongfei Liu,Zigeng Wang 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.4

        In this research, Magnesium Phosphate Cement (MPC) was innovatively used to bond with Carbon Fiber Reinforced Plastic (CFRP) in order to form the MPC-CFRP as a composite material, adopted both for chloride ions extraction and reinforcement of concrete columns. First of all, a series of tests were conducted to evaluate the feasibility of the MPC-CFRP as anode of Electrochemical Chloride Extraction (ECE) system, including chloride ions concentration, Scanning Electron Microscope (SEM) and tensile strength. Then, the MPC-CFRP was used to wrap around reinforced concrete column for the sake of reinforcement and extraction of chloride ions. The test results indicated that the chloride extraction efficiency and the tensile resistance of the MPCCFRP electrode were superior to the control group. The ECE process can decrease the interface bonding strength between the concrete and the steel rebar while the compression resistance of the columns could be increased remarkably. Therefore, the MPCCFRP composite material is capable of achieving the dual functions of strengthening and repairing the reinforced concrete construction.

      • KCI등재

        Investigation on Mechanical Properties of Masonry Infill Wall Strengthened with ECC

        Yue Li,Jincai Zhu,Zigeng Wang 대한토목학회 2019 KSCE Journal of Civil Engineering Vol.23 No.1

        Engineered Cementitious Composite (ECC) is an advanced composite material with strain-hardening and multiple-cracking behaviors. In this study, two types of ECC materials were troweled on masonry infill walls strengthened with expansion bolt and interfacial agent. The seismic performance of the unreinforced and the ECC reinforced masonry structures was evaluated by the reversed cyclic loading test. The results showed that the application of the ECC on the masonry infill walls can improve the ultimate bearing capacity (in plane), ductility, stiffness and accumulative energy dissipation of the structure. Compared with the masonry structure with one side reinforced by the ECC, the structure with both sides reinforced by the ECC could better improve the ultimate bearing capacity, stiffness and cumulative energy dissipation with little difference on the ductility improvement. Moreover, the expansion bolt and the interfacial agent used to improve the connection between the ECC and the masonry structure have the ability to greatly increase the mechanical properties of the structure under cyclic loading.

      • KCI등재

        Experimental-Numerical Analysis of Bending Behavior of Reinforced Concrete Beam with Electrochemical Chloride Extraction-Strengthening

        Yue Li,Jianglin Liu,Zigeng Wang,Ji Hao 대한토목학회 2021 KSCE Journal of Civil Engineering Vol.25 No.8

        The magnesium phosphate cement (MPC)-carbon fiber reinforced plastics (CFRP) strengtheningand electrochemical chloride extraction (ECE) integration experiment was carried out for reinforced concrete beams corroded by sodium chloride. Then the bending performance of the reinforced concrete beams was analyzed by test and numerical simulation. The reinforced concrete beams of the control group were energized to accelerate corrosion until the theoretical corrosion rate of the steel bars reached 10%. The second group of the beams were strengthened, and the other three groups of the beams were strengthened and the inside chloride was removed by electrochemistry method with different dechlorination current densities. The bending test results showed that the bending bearing capacity of the strengthenedconcrete beam increased by 18.22%. The bending bearing capacity of the strengthened and dechlorinated beam increased by 15.11%, 13.25% and 9.76%, respectively. The chloride ion content at the interface between steel bar and concrete reduced by 68.68% − 82.64%. In addition, the numerical simulation method of "standard cube test block-central pull out test block-reinforced concrete beam" was proposed. A 3D mesoscopic finite element plastic damage model of the reinforced concrete beams strengthened by MPC-CFRP was established. The numerical results were in good agreement with the experimental results.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼