RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Electrochromic performance of the mixed V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub> thin films synthesized by pulsed spray pyrolysis technique

        Patil, C.E.,Tarwal, N.L.,Jadhav, P.R.,Shinde, P.S.,Deshmukh, H.P.,Karanjkar, M.M.,Moholkar, A.V.,Gang, M.G.,Kim, J.H.,Patil, P.S. Elsevier 2014 Current Applied Physics Vol.14 No.3

        Vanadium pentoxide (V<SUB>2</SUB>O<SUB>5</SUB>) mixed tungsten trioxide (WO<SUB>3</SUB>) thin films have been synthesized by a novel pulsed spray pyrolysis technique (PSPT) on glass and fluorine doped tin oxide (FTO) coated glass substrates at 400 <SUP>o</SUP>C. Aqueous solutions of equimolar vanadium chloride and ammonium tungstate were mixed in volume proportions (5%, 10% and 15%) for the deposition of V<SUB>2</SUB>O<SUB>5</SUB>-WO<SUB>3</SUB> thin films. The structural, morphological, optical and electrochemical properties of V<SUB>2</SUB>O<SUB>5</SUB>-WO<SUB>3</SUB> thin films were investigated by FT-IR, XRD, SEM, cyclic voltammetry, chronoamperometry and chronocoulometry techniques. The results showed that the electrochemical properties of V<SUB>2</SUB>O<SUB>5</SUB> were altered by mixing WO<SUB>3</SUB>. All the films exhibited cathodic electrochromism in lithium containing electrolyte (0.5 M LiClO<SUB>4</SUB> + propylene carbonate (PC)). Maximum coloration efficiency (CE) of about 49 cm<SUP>2</SUP> C<SUP>-1</SUP> was observed for the V<SUB>2</SUB>O<SUB>5</SUB> film mixed with 15% WO<SUB>3</SUB>. The electrochemical stability of the sample was examined and it was found to be stable up to 1000 cycles.

      • Binder-free novel Cu<sub>4</sub>SnS<sub>4</sub> electrode for high-performance supercapacitors

        Lokhande, A.C.,Patil, Amar,Shelke, A.,Babar, P.T.,Gang, M.G.,Lokhande, V.C.,Dhawale, Dattatray S.,Lokhande, C.D.,Kim, Jin Hyeok Elsevier 2018 ELECTROCHIMICA ACTA Vol.284 No.-

        <P><B>Abstract</B></P> <P>In this work, for the first time, we report the direct coating of ternary chalcogenide-based nanostructured Cu<SUB>4</SUB>SnS<SUB>4</SUB> (CTS) thin film electrodes for the energy storage application. The phase purity, composition, microstructure, optical and electrical properties of the synthesized electrode are validated through comprehensive characterization techniques. In the supercapacitive application, the CTS electrode delivers an excellent performance with the maximum specific capacitance of 704 F/g, an energy density of 27.77 Wh/kg and a power density of 7.14 kW/kg in 1 M NaOH electrolyte solution. The intrinsic electrode properties such as the electronic conductivity, crystal structure and film hydrophilicity are found to be influential parameters for the obtained high performance and are studied in detail. Furthermore, the solid-state supercapacitive device fabricated using CTS electrodes and polymer gel electrolyte (PVA/NaOH) in a symmetric configuration, demonstrated the highest specific capacitance of 34.9 F/g with an energy density of 2.4 Wh/kg, a power density of 0.291 kW/kg and more than 89.9% capacitive retention. The presented work reports a simple, cost-effective, scalable and replicable approach for electrode application in supercapacitor industry.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Specific capacitance of 704 F/g, an energy density of 27.77 Wh/kg and a power density of 7.14 kW/kg. </LI> <LI> The intrinsic electrode properties, such as the electronic conductivity, crystal structure and hydrophilicity are found to be influential parameters. </LI> <LI> Symmetric device: specific capacitance of 34.9 F/g, an energy density of 2.4 Wh/kg, a power density of 0.291 kW/kg with 89.9% capacitive retention for 1000 cycles. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>The obtained porous microstructure of the CTS thin film electrode using SILAR method and its electrochemical characterization in solid-state symmetric configuration. The CV and GCD curves are accomplished in the potential window range of 0–1.2 V. The device exhibited 89.9% stability retention after 1000 CV cycles.</P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Electrochromic performance of the mixed V2O5eWO3 thin films synthesized by pulsed spray pyrolysis technique

        C.E. Patil,N.L. Tarwal,P.R. Jadhav,P.S. Shinde,H.P. Deshmukh,J.D. Song,A.V. Moholkar,M.G. Gang,김진혁,P.S. Patil 한국물리학회 2014 Current Applied Physics Vol.14 No.3

        Vanadium pentoxide (V2O5) mixed tungsten trioxide (WO3) thin films have been synthesized by a novel pulsed spray pyrolysis technique (PSPT) on glass and fluorine doped tin oxide (FTO) coated glass substrates at 400 C. Aqueous solutions of equimolar vanadium chloride and ammonium tungstate were mixed in volume proportions (5%, 10% and 15%) for the deposition of V2O5eWO3 thin films. The structural, morphological, optical and electrochemical properties of V2O5eWO3 thin films were investigated by FT-IR, XRD, SEM, cyclic voltammetry, chronoamperometry and chronocoulometry techniques. The results showed that the electrochemical properties of V2O5 were altered by mixing WO3. All the films exhibited cathodic electrochromism in lithium containing electrolyte (0.5 M LiClO4 þ propylene carbonate (PC)). Maximum coloration efficiency (CE) of about 49 cm2 C1 was observed for the V2O5 film mixed with 15% WO3. The electrochemical stability of the sample was examined and it was found to be stable up to 1000 cycles.

      • Improved Photoelectrochemical Cell Performance of Tin Oxide with Functionalized Multiwalled Carbon Nanotubes–Cadmium Selenide Sensitizer

        Bhande, Sambhaji S.,Ambade, Rohan B.,Shinde, Dipak V.,Ambade, Swapnil B.,Patil, Supriya A.,Naushad, Mu.,Mane, Rajaram S.,Alothman, Z. A.,Lee, Soo-Hyoung,Han, Sung-Hwan American Chemical Society 2015 ACS APPLIED MATERIALS & INTERFACES Vol.7 No.45

        <P>Here we report functionalized multiwalled carbon nanotubes (<I>f</I>-MWCNTs)–CdSe nanocrystals (NCs) as photosensitizer in photoelectrochemical cells, where <I>f</I>-MWCNTs were uniformly coated with CdSe NCs onto SnO<SUB>2</SUB> upright standing nanosheets by using a simple electrodeposition method. The resultant blended photoanodes demonstrate extraordinary electrochemical properties including higher Stern–Volmer constant, higher absorbance, and positive quenching, etc., caused by more accessibility of CdSe NCs compared with pristine SnO<SUB>2</SUB>–CdSe photoanode. Atomic and weight percent changes of carbon with <I>f</I>-MWCNTs blending concentrations were confirmed from the energy dispersive X-ray analysis. The morphology images show a uniform coverage of CdSe NCs over <I>f</I>-MWCNTs forming a core–shell type structure as a blend. Compared to pristine CdSe, photoanode with <I>f</I>-MWCNTs demonstrated a 257% increase in overall power conversion efficiency. Obtained results were corroborated by the electrochemical impedance analysis. Higher scattering, more accessibility, and hierarchical structure of SnO<SUB>2</SUB>-<I>f</I>-MWCNTs-blend–CdSe NCs photoanode is responsible for higher (a) electron mobility (6.89 × 10<SUP>–4</SUP> to 10.89 × 10<SUP>–4</SUP> cm<SUP>2</SUP> V<SUP>–1</SUP> S<SUP>1–</SUP>), (b) diffusion length (27 × 10<SUP>–6</SUP>), (c) average electron lifetime (32.2 ms), and transit time (1.15 ms).</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/aamick/2015/aamick.2015.7.issue-45/acsami.5b05385/production/images/medium/am-2015-05385e_0010.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/am5b05385'>ACS Electronic Supporting Info</A></P>

      • SCISCIESCOPUS

        Gas sensing performance of the spray deposited Cd-ZnO thin films

        Tarwal, N.L.,Patil, A.R.,Harale, N.S.,Rajgure, A.V.,Suryavanshi, S.S.,Bae, W.R.,Patil, P.S.,Kim, J.H.,Jang, J.H. Elsevier Sequoia 2014 JOURNAL OF ALLOYS AND COMPOUNDS Vol.598 No.-

        <P>A simple and cost-effective spray pyrolysis technique was employed to deposit undoped and cadmium doped zinc oxide (Cd-ZnO) thin films onto the glass substrates and the deposited films were characterized for their structural, morphological and optical properties. The doping concentration was varied from 1 to 5 at.%. All the films showed the preferred orientation along (002) plane. However, the (002) plane was shifted towards the lower 2 theta values after Cd doping. The lattice parameters and texture coefficients were obtained by analyzing the XRD patterns. The band gap energies of the films were decreased with increase in Cd concentration. Moreover, the gas sensing properties of the Cd-ZnO films were investigated towards the reducing gases such as Liquefied petroleum gas (LPG), acetone, ethanol and ammonia. The cadmium dopant plays a vital role in fine tuning the physico-chemical properties and consequently gas sensitivity of the ZnO thin films. The sample with 2 at.% Cd doped ZnO (CZO2) showed the maximum gas sensitivity (87%) towards acetone at 325 degrees C with faster response and recovery time periods of 6 s and 23 s, respectively. (C) 2014 Elsevier B. V. All rights reserved.</P>

      • An ion exchange mediated shape-preserving strategy for constructing 1-D arrays of porous CoS<sub>1.0365</sub> nanorods for electrocatalytic reduction of triiodide

        Patil, Supriya A.,Shinde, Dipak V.,Lim, Iseul,Cho, Keumnam,Bhande, Sambhaji S.,Mane, Rajaram S.,Shrestha, Nabeen K.,Lee, Joong Kee,Yoon, Tae Hyun,Han, Sung-Hwan The Royal Society of Chemistry 2015 Journal of Materials Chemistry A Vol.3 No.15

        <▼1><P>A solution based ion exchange mediated strategy for constructing 1-D arrays of porous CoS1.0365 nanorod film from analogous 1-D array of Co3O4 film derived from pyrolysis of nanostructured cobalt hydroxycarbonate film.</P></▼1><▼2><P>Based on a coordination chemistry approach, the present work reports on the synthesis of thin films of various cobalt hydroxycarbonate nanostructures such as nanobeams, nanoneedles, and bending nanorods using three different cobalt precursors <I>viz.</I> Cl<SUP>−</SUP>, NO3<SUP>−</SUP> and CH3COO<SUP>−</SUP>. After pyrolysis in air, the hydroxycarbonate nanostructures are transferred into 1-D arrays of Co3O4 nanorods. The obtained 1-D Co3O4 nanostructures are then transformed into the corresponding analogous shaped 1-D arrays of porous cobalt sulfide (CoS1.0365) nanostructures using a wet chemical transformation method based on an ion exchange approach. The nanostructured films before and after the ion exchange reaction are characterized using field emission electron scanning microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and inductively coupled plasma mass spectroscopy (ICP-MS) measurements. As a proof-of-concept demonstration for the application, various shaped CoS1.0365 nanorod films synthesized are investigated as a Pt-free counter electrode in dye-sensitized-solar cells (DSSCs). The influence of three different counter anions of the cobalt precursors on the structural, textural, and morphological aspects, and thereby their influence on electronic and electrochemical properties, has been investigated. A correlation among electrical conductivity, charge transfer resistance and electrocatalytic performance of various CoS1.0365 nanorod films obtained from different cobalt precursors has been established. Among the various nanostructures, the thicker nanorod film synthesized using a chloride precursor has demonstrated the best electrocatalytic behavior toward triiodide reduction, which led to a short circuit current density of 18.04 mA cm<SUP>−2</SUP> and energy conversion efficiency of 7.4% of the DSSC. This photovoltaic performance is highly competitive to a current density of 18.26 mA cm<SUP>−2</SUP> and energy conversion efficiency of 7.7% exhibited by the standard Pt counter electrode.</P></▼2>

      • Gas sensing properties of 3D mesoporous nanostructured ZnO thin films

        Patil, V. L.,Kumbhar, S. S.,Vanalakar, S. A.,Tarwal, N. L.,Mali, S. S.,Kim, J. H.,Patil, P. S. The Royal Society of Chemistry 2018 New journal of chemistry Vol.42 No.16

        <P>Advancing the properties of selective and sensitive metal oxide based gas sensors is a challenging research topic for the detection of toxic, and pollutant gases. In the present research, we successfully deposited a three dimensional (3D) mesoporous ZnO nanostructure on a glass substrate by using a hydrothermal method, and tested the material for its gas sensing performance. These 3D mesoporous ZnO nanostructures were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence techniques. Gas sensing performance analysis was carried out for nitrogen dioxide (NO2) gas at different temperatures and concentrations. The 3D mesoporous ZnO nanostructure revealed excellent gas sensing performance for NO2 gas because of its large surface area. The larger surface area led to an increase in the gas sensitivity. In addition, the sensor based on the 3D mesoporous ZnO nanostructure could be used at a low operating temperature of 150 °C. This work suggests that the 3D mesoporous ZnO nanostructure is a versatile material for NO2 gas sensing applications.</P>

      • SCISCIESCOPUS

        A review on pulsed laser deposited CZTS thin films for solar cell applications

        Vanalakar, S.A.,Agawane, G.L.,Shin, S.W.,Suryawanshi, M.P.,Gurav, K.V.,Jeon, K.S.,Patil, P.S.,Jeong, C.W.,Kim, J.Y.,Kim, J.H. Elsevier 2015 JOURNAL OF ALLOYS AND COMPOUNDS Vol.619 No.-

        <P><B>Abstract</B></P> <P>Cu<SUB>2</SUB>ZnSnS<SUB>4</SUB>; commonly abbreviated as CZTS is a promising material for low cost thin film solar cells, because of its suitable band gap energy of around 1.5eV and large absorption coefficient of over 10<SUP>4</SUP> cm<SUP>−1</SUP>. All the constituents of this material are abundant in the earth’s crust, and they are not toxic making it a smarter choice. Since 1996, after the initial success of the CZTS based solar cell (with its light to electrical conversion efficiency of 0.6%), significant progress in this research area has been achieved, especially in the last five years. Now-a-days, the conversion efficiency of the CZTS thin film solar cell has improved to 12%. Over 600 papers on CZTS have been published since 2001, and the majority of these discuss the preparation of CZTS thin films by different methods. So far, many physical and chemical techniques have been employed for preparing CZTS thin films. Among them, the pulsed laser deposition (PLD) is a versatile deposition method. PLD is a simple, but multipurpose, experimental method that finds use as a means of modeling a very diverse range of materials, and in extensive areas of thin film deposition and multi-layer research. This technique is suitable for depositing high quality films with complex compositions because of its influencing properties such as harmonious transfer of species from the target to substrate, enrichment in crystallinity, clean deposition, and simplicity and flexibility in the engineering design. On the occasion of the 25th anniversary of PLD, this manuscript, reviews the synthesis of CZTS semiconductor thin films fabricated by PLD. This review begins with a description of the PLD system, and then introduces the CZTS and preparation of the CZTS target for PLD deposition. A survey of pulsed laser deposited CZTS thin films and their solar cell performance is discussed in detail. Finally, we present perspectives for further developments of PLD for a CZTS based solar cell absorber layer.</P>

      • Solution processed growth and photoelectrochemistry of Bi<sub>2</sub>S<sub>3</sub> nanorods thin film

        Patil, S.A.,Hwang, Y.T.,Jadhav, V.V.,Kim, K.H.,Kim, H.S. Elsevier Sequoia 2017 Journal of photochemistry and photobiology. A, Che Vol.332 No.-

        Bismuth sulfide (Bi<SUB>2</SUB>S<SUB>3</SUB>) belongs to a family of metal chalcogenides in a class of non-toxic semiconductor materials, whose importance in photovoltaic and thermoelectric applications is well recognized. We have successfully prepared crystalline Bi<SUB>2</SUB>S<SUB>3</SUB> nanorod (NR) thin films from a solution of bismuth chloride and thioacetamide via a solution process method. A possible mechanism for the growth process of the Bi<SUB>2</SUB>S<SUB>3</SUB> NRs is proposed. Prepared Bi<SUB>2</SUB>S<SUB>3</SUB> NR films characterized via X-ray diffraction (XRD), energy dispersive analysis (EDX), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), brunauer-emmett-teller (BET) surface area, and photoelectrochemical cells are studied. The morphology of the Bi<SUB>2</SUB>S<SUB>3</SUB> NR reveals a photocurrent density of 0.20mA/cm<SUP>2</SUP> at 0V bias condition under 1 sun illumination. The charge transport properties of the Bi<SUB>2</SUB>S<SUB>3</SUB> NRs are studied via impedance spectroscopy analysis. This preparation method is economical for scale-up processes, and can also applied to the preparation of other metal sulfide semiconductors.

      • A simple, room temperature, solid-state synthesis route for metal oxide nanostructures

        Patil, Supriya A.,Shinde, Dipak V.,Ahn, Do Young,Patil, Dilip V.,Tehare, Kailas K.,Jadhav, Vijaykumar V.,Lee, Joong K.,Mane, Rajaram S.,Shrestha, Nabeen K.,Han, Sung-Hwan The Royal Society of Chemistry 2014 Journal of Materials Chemistry A Vol.2 No.33

        <P>In this work, we demonstrate an extremely simple but highly effective strategy for the synthesis of various functional metal oxides (MOs) such as ZnO, In2O3, Bi2O3, and SnO2nanoparticles with various distinct shapes at room temperature<I>via</I>a solid-state reaction method. The method involves only mixing and stirring of the corresponding metal salt and NaOH together in the solid phase, which yields highly crystalline metal oxides within 5-10 min of reaction time. The obtained paste can be directly doctor-bladed onto a variety of substrates for photoelectrochemical applications. The crystal structure and surface composition of the MOs are obtained by X-ray diffraction patterns, energy dispersive analysis and X-ray photoelectron spectroscopy, respectively. The surface morphology is confirmed from the scanning electron microscopy surface photo-images. The surface area and pore size distribution are studied by the N2adsorption method. As a proof-of-concept demonstration for the application, ZnO nanoplate structures are envisaged in DSSCs as photoanodes, which enables us to obtain excellent photovoltaic properties with a power conversion efficiency of 5%. The proposed method does not require a sophisticated instrumental setup or harsh conditions, and the method is easily scalable. Hence, it can be applied for the cost-effective and large-scale production of MO nanoparticles with high crystallinity.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼