RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • THE DETECTION OF INSTANTANEOUS DISTORTED CURRENT WITH THREE-DIMENSIONAL SPACE VECTOR

        Tong Mei,Tong Jie,Jiang Jingping 전력전자학회 1998 ICPE(ISPE)논문집 Vol.- No.-

        Active power filter is a kind of device used for compensating instantaneous reactive and harmonic current in three-phase circuits An essential technology that determines the behavior of an active power filter is the method of detecting the distorted current Using three-dimensional space vectors, this paper describes a simple method for detecting the distorted current without any coordinate transformation The effectiveness of the novel method is verified by the theoretical analysis and simulation.

      • Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria

        Tong, Tong,Chen, Si,Wang, Lianrong,Tang, You,Ryu, Jae Yong,Jiang, Susu,Wu, Xiaolin,Chen, Chao,Luo, Jie,Deng, Zixin,Li, Zhiqiang,Lee, Sang Yup,Chen, Shi National Academy of Sciences 2018 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.115 No.13

        <P><B>Significance</B></P><P>Phosphorothioate (PT) modification of the DNA sugar-phosphate backbone is an important microbial epigenetic modification governed by DndABCDE, which together with DndFGH, constitutes a restriction-modification system. We show that up to 45% of 1,349 identified bacterial <I>dnd</I> systems exhibit the form of solitary <I>dndABCDE</I> without the restriction counterparts of <I>dndFGH</I>. The combination of epigenomics, transcriptome analysis, and metabolomics suggests that in addition to providing a genetic barrier against invasive DNA, PT modification is a versatile player involved in the epigenetic control of gene expression and the maintenance of cellular redox homeostasis. This finding provides evolutionary and functional insights into this unusual epigenetic modification. Our results imply that PT systems might evolve similar to other epigenetic modification systems with multiple cellular functions.</P><P>The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of <I>dnd</I> systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial <I>dnd</I> systems: 1,349 bacterial <I>dnd</I> systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary <I>dndBCDE</I> gene cluster that lacks the <I>dndFGH</I> restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced <I>Pseudomonas fluorescens</I> to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection.</P>

      • KCI등재

        Wnt/β-Catenin Promotes the Osteoblastic Potential of BMP9 Through Down-Regulating Cyp26b1 in Mesenchymal Stem Cells

        Yao Xin-Tong,Li Pei-pei,Liu Jiang,Yang Yuan-Yuan,Luo Zhen-Ling,Jiang Hai-Tao,He Wen-Ge,Luo Hong-Hong,Deng Yi-Xuan,He Bai-Cheng 한국조직공학과 재생의학회 2023 조직공학과 재생의학 Vol.20 No.5

        BACKGROUND: All-trans retinoic acid (ATRA) promotes the osteogenic differentiation induced by bone morphogenetic protein 9 (BMP9), but the intrinsic relationship between BMP9 and ATRA keeps unknown. Herein, we investigated the effect of Cyp26b1, a critical enzyme of ATRA degradation, on the BMP9-induced osteogenic differentiation in mesenchymal stem cells (MSCs), and unveiled possible mechanism through which BMP9 regulates the expression of Cyp26b1. METHODS: ATRA content was detected with ELISA and HPLC–MS/MS. PCR, Western blot, and histochemical staining were used to assay the osteogenic markers. Fetal limbs culture, cranial defect repair model, and micro–computed tomographic were used to evaluate the quality of bone formation. IP and ChIP assay were used to explore possible mechanism. RESULTS: We found that the protein level of Cyp26b1 was increased with age, whereas the ATRA content decreased. The osteogenic markers induced by BMP9 were increased by inhibiting or silencing Cyp26b1 but reduced by exogenous Cyp26b1. The BMP9-induced bone formation was enhanced by inhibiting Cyp26b1. The cranial defect repair was promoted by BMP9, which was strengthened by silencing Cyp26b1 and reduced by exogenous Cyp26b1. Mechanically, Cyp26b1 was reduced by BMP9, which was enhanced by activating Wnt/b-catenin, and reduced by inhibiting this pathway. b-catenin interacts with Smad1/5/9, and both were recruited at the promoter of Cyp26b1. CONCLUSIONS: Our findings suggested the BMP9-induced osteoblastic differentiation was mediated by activating retinoic acid signalling, viadown-regulating Cyp26b1. Meanwhile, Cyp26b1 may be a novel potential therapeutic target for the treatment of bone-related diseases or accelerating bone-tissue engineering.

      • KCI등재

        Epsilon-Fe₂O₃ is a novel intermediate for magnetite biosynthesis in magnetotactic bacteria

        Tong Wen,Yunpeng Zhang,Yuanyuan Geng,Junquan Liu,Abdul Basit,Jiesheng Tian,Ying Li,Ji-Lun Li,Jing Ju,Wei Jiang 한국생체재료학회 2019 생체재료학회지 Vol.23 No.3

        Background: Natural biological magnetite nanoparticles are widely distributed from microorganisms to humans. It is found to be very important in organisms, especially in navigation. Moreover, purified magnetite nanoparticles also have potential applications in bioengineering and biomedicine. Magnetotactic bacteria (MTB) is considered one of the most abundant species around the world which can form intracellular membrane enveloped magnetic nanoparticles, referred to as magnetosomes. To our knowledge, the biomineralization of magnetosome in MTB involves a serious of genes located on a large unstable genomic region named magnetosome island, which specially exists in MTB. The magnetite core of magnetosome formed via a Fe (III) ion intermediates, for instance, α-Fe2O3 and ferrihydrite. Though the biosynthesis of magnetosome represents a general biomineralization mechanism of biogenic magnetite, knowledge of magnetosome biosynthesis and biomineralization remains very limited. Method: Cells used in this study were cultured in a 7.5-L bioreactor, samples for intermediate capture were taken each certain time interval after the generation of magnetosome biosynthesis condition. High-resolution transmission electron microscopy were used to analyze the detailed structure of magnetosomes. The parameters of the crystal structures were obtained by Fast Fourier Transform analyses. Results: In this study, we identified a novel intermediate phase, ε-Fe2O3, during the magnetite maturation process in MTB via kinetic analysis. Unlike α-Fe2O3, which has been reported as a precursor during magnetosome biosynthesis in MTB before, ε-Fe2O3, due to its thermal instability, is a rare phase with scarce natural abundance. This finding confirmed that ε-Fe2O3 is an important novel intermediate during the biomineralization of magnetosome in MTB, and shed new light on the magnetosome biosynthesis pathway.

      • KCI등재

        Sesquiterpenoids from Farfugium japonicum and Their Inhibitory Activity on NO Production in RAW264.7 Cells

        Jiang-He Zhao,Wei-Dong Xie,Tong Shen,Xia Yang,Hong Zhao,Xia Li 대한약학회 2012 Archives of Pharmacal Research Vol.35 No.7

        A new eremophilane sesquiterpenoid, namely, 3β-angeloyloxy-6β,8β-dihydroxy-9β-senecioyloxyeremophil-7(11)-en-12,8α-lactone, along with eight known sesquiterpenoids, was isolated from the rhizome of Farfugium japonicum. The structures of all isolates were identified based on analyses of spectroscopic data (HRESIMS, IR, 1D, and 2D NMR) and comparison with literature data. The inhibitory effects of compounds 1-4 on nitric oxide production in lipopolysaccaride-activated mouse macrophages were also evaluated.

      • KCI등재

        In ovo feeding of creatine pyruvate alters energy metabolism in muscle of embryos and post-hatch broilers

        Tong Yang,Minmeng Zhao,Jiaolong Li,Lin Zhang,Yun Jiang,Guanghong Zhou,Feng Gao 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.6

        Objective: This study was conducted to investigate the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the energy metabolism in thigh muscle of embryos and neonatal broilers. Methods: A total of 960 eggs were randomly assigned to three treatments: i) non-injected control group, ii) saline group injected with 0.6 mL of physiological saline (0.75%), and iii) CrPyr group injected with 0.6 mL of physiologi-cal saline (0.75%) containing 12 mg CrPyr/egg on 17.5 d of incubation. After hatching, 120 male chicks (close to the average body weight of the pooled group) in each group were randomly assigned to eight replications. The feeding experiment lasted 7 days. Results: The results showed that IOF of CrPyr increased glucose concentrations in the thigh muscle of broilers on 2 d after injection (p<0.05). Compared with the control and saline groups, the concentration of creatine in CrPyr group was increased on 2 d after injection and the day of hatch (p<0.05). Moreover, IOF of CrPyr increased the creatine kinase activity at hatch and increased the activities of hexokinase and pyruvate kinase on 2 d after injection and the day of hatch (p<0.05). Chicks in CrPyr group showed higher mRNA expressions of glucose transporter 3 (GLUT3) and GLUT8 on the day of hatch (p<0.05). Conclusion: These results demonstrated that IOF of CrPyr was beneficial to enhance muscle energy reserves of em-bryos and hatchlings.

      • Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST

        Tong, Yaojun,Whitford, Christopher M.,Robertsen, Helene L.,Blin, Kai,Jørgensen, Tue S.,Klitgaard, Andreas K.,Gren, Tetiana,Jiang, Xinglin,Weber, Tilmann,Lee, Sang Yup National Academy of Sciences 2019 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.116 No.41

        <P><B>Significance</B></P><P>Although CRISPR-Cas9 tools dramatically simplified the genetic manipulation of actinomycetes, significant concerns of genome instability caused by the DNA double-strand breaks (DSBs) and common off-target effects remain. To address these concerns, we developed CRISPR-BEST, a DSB-free and high-fidelity single-nucleotide–resolution base editing system for streptomycetes and validated its use by determining editing properties and genome-wide off-target effects. Furthermore, our CRISPR-BEST toolkit supports Csy4-based multiplexing to target multiple genes of interest in parallel. We believe that our CRISPR-BEST approach is a significant improvement over existing genetic manipulation methods to engineer streptomycetes, especially for those strains that cannot be genome-edited using normal DSB-based genome editing systems, such as CRISPR-Cas9.</P><P>Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide–resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different <I>Streptomyces</I> species. Particularly in nonmodel actinomycete <I>Streptomyces collinus</I> Tu¨365, CRISPR-cBEST efficiently inactivated the 2 copies of <I>kirN</I> gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.</P>

      • KCI등재

        Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c

        Jiang, Yong,Liu, He,Liu, Wen-jing,Tong, Hai-bin,Chen, Chang-jun,Lin, Fu-gui,Zhuo, Yan-hang,Qian, Xiao-zhen,Wang, Zeng-bin,Wang, Yu,Zhang, Peng,Jia, Hong-liang Korean Society for Molecular and Cellular Biology 2016 Molecules and cells Vol.39 No.4

        Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼