RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Self‑assembled graphene quantum dots‑Co3O4 nanocomposite for highly efficient oxygen evolution reaction electrocatalyst

        Ruibin Guo,Mengqi Fang,Qianglong Chen,Nan Wang,Bingjie Wang,Nijuan Liu,Zunli Mo 한국탄소학회 2023 Carbon Letters Vol.33 No.6

        A novel kind of self-assembled graphene quantum dots-Co3O4 (GQDs-Co3O4) nanocomposite was successfully manufactured through a hydrothermal approach and used as an extremely effectual oxygen evolution reaction (OER) electrocatalyst. The characterization of morphology with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that Co3O4 nanosheets combined with graphene quantum dots (GQDs) had a new type of hexagonal lamellar selfassembly structure. The GQDs-Co3O4 electrocatalyst showed enhanced electrochemical catalytic properties in an alkaline solution. The start potential of the OER was 0.543 V (vs SCE) in 1 M KOH solution, and 0.577 V (vs SCE) in 0.1 M KOH solution correspondingly. The current density of 10 mA cm? 2 had been attained at the overpotential of 321 mV in 1 M KOH solution and 450 mV in 0.1 M KOH solution. Furthermore, the current density can reach 171 mA cm? 2 in 1 M KOH solution and 21.4 mA cm? 2 in 0.1 M KOH solution at 0.8 V. Moreover, the GQDs-Co3O4 nanocomposite also maintained an ideal constancy in an alkaline solution with only a small deterioration of the activity (7%) compared with the original value after repeating potential cycling for 1000 cycles.

      • KCI등재

        Influence of DSSs on Urban Air Quality in China during 2005-2010 and Analysis of a Severe DSS Event

        Wei Wang,Liang Li,Benfeng Pan,Shuang Chen,Ruibin Wang,Jianjun Li,Haohao Zheng 한국기상학회 2013 Asia-Pacific Journal of Atmospheric Sciences Vol.49 No.1

        In each year, Dust and Sandstorms (DSSs) triggered by cold air masses enhance particle concentration over large areas in China during spring and winter. In this paper, daily Air Pollution Index (API) of 113 major cities in China during dust events was analyzed to present the influence of DSSs on urban air quality. From 2005 to 2010, a total of 93 dust events were identified, on average there are approximately 16 dust events in a year. The number of total polluted days caused by DSSs in 113 major cities ranged from 147 to 546 each year, with maximum in 2010 and minimum in 2007. The number of total heavily polluted days caused by DSSs in major cities ranged from 14 to 78 each year, with maximum in 2010 and minimum in 2005. DSSs affected major cities most severely during March to May. Furthermore, a typical DSS observed from 26 to 31May 2008 was described in terms of meteorological features and PM10 concentration as well as API levels of 113 major cities. This event lead to high PM10 concentration and low visibility over major cities, with maximum daily PM10 concentration of 1511 μg m−3 in Chifeng on 28 May, which was directly caused by strong wind in front of surface high pressure system passing through sand source areas in Mongolia and North China. The most severe pollution occurred on 29 May, with 38 cities polluted and 7 cities heavily polluted.

      • KCI등재

        The shaping of cancer genomes with the regional impact of mutation processes

        이수연,Wang Han,Cho Hae Jin,Xi Ruibin,Kim Tae-Min 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Mutation signature analysis has been used to infer the contributions of various DNA mutagenic-repair events in individual cancer genomes. Here, we build a statistical framework using a multinomial distribution to assign individual mutations to their cognate mutation signatures. We applied it to 47 million somatic mutations in 1925 publicly available cancer genomes to obtain a mutation signature map at the resolution of individual somatic mutations. Based on mutation signature-level genetic-epigenetic correlative analyses, mutations with transcriptional and replicative strand asymmetries show different enrichment patterns across genomes, and “transcribed” chromatin states and gene boundaries are particularly vulnerable to transcription-coupled repair activities. While causative processes of cancer-driving mutations can be diverse, as shown for converging effects of multiple mutational processes on TP53 mutations, the substantial fraction of recurrently mutated amino acids points to specific mutational processes, e.g., age-related C-to-T transition for KRAS p.G12 mutations. Our investigation of evolutionary trajectories with respect to mutation signatures further revealed that candidate pairs of early- vs. late-operative mutation processes in cancer genomes represent evolutionary dynamics of multiple mutational processes in the shaping of cancer genomes. We also observed that the local mutation clusters of kataegis often include mutations arising from multiple mutational processes, suggestive of a locally synchronous impact of multiple mutational processes on cancer genomes. Taken together, our examination of the genome-wide landscape of mutation signatures at the resolution of individual somatic mutations shows the spatially and temporally distinct mutagenesis-repair-replication histories of various mutational processes and their effects on shaping cancer genomes.

      • KCI등재

        Improvement of the Beam-Wave Interaction Eciency Based on the Coupling-Slot Configuration in an Extended Interaction Oscillator

        Sairong Zhu,Yong Yin,Liangjie Bi,Zhiwei Chang,Che Xu,Fanbo Zeng,Ruibin Peng,Wen Zhou,Bin Wang,Hailong Li,Lin Meng 한국물리학회 2018 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.73 No.9

        A method aimed at improving the beam-wave interaction eciency by changing the coupling slot configuration has been proposed in the study of extended interaction oscillators (EIOs). The disper- sion characteristics, coupling coecient and interaction impedance of the high-frequency structure based on different types of coupling slots have been investigated. Four types of coupled cavity structures with different layouts of the coupling slots have been compared to improve the beam- wave interaction eciency, so as to analyze the beam-wave interaction and practical applications. In order to determine the improvement of the coupling slot to a coupled cavity circuit in an EIO, we designed four nine-gap EIOs based on the coupled cavity structure with different coupling slot configurations. With different operating frequencies and voltages takes into consideration, beam voltages from 27 to 33 kV have been simulated to achieve the best beam-wave interaction eciency so that the EIOs are able to work in the 2 mode. The in uence of the Rb and the ds on the output power is also taken into consideration. The Rb is the radius of the electron beam, and the ds is the width of the coupling slot. The simulation results indicate that a single-slot-type EIO has the best beam-wave interaction eciency. Its maximum output power is 2.8 kW and the eciency is 18% when the operating voltage is 31 kV and electric current is 0.5 A. The output powers of these four EIOs that were designed for comparison are not less than 1.7 kW. The improved coupling-slot con- gurations enables the extended interaction oscillator to meet the different engineering requirements better.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼