RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fuel properties of bio-oil/bio-diesel mixture characterized by TG, FTIR and 1^H NMR

        Jiang Xiaoxiang,Zhong Zhaoping,Naoko Ellis 한국화학공학회 2011 Korean Journal of Chemical Engineering Vol.28 No.1

        There has been an increasing interest in alternative fuels made from biomass which is abundant and renewable. Bio-oil and bio-diesel seem to be such promising liquid fuels. Bio-oil produced by fast pyrolysis of biomass is highly viscous, acidic, and has high water content. To overcome these problems as a fuel, a method of emulsifying bio-oil with bio-diesel was performed in the previous paper, and a stable mixture of bio-oil and bio-diesel was successfully prepared. In this paper, several properties of the mixture are discussed by using TG, FTIR and 1^H NMR. The results show us that, compared with crude bio-oil, some properties of bio-oil/bio-diesel mixture such as water content,acid number, viscosity are much improved. The thermal decomposition of the mixture under air/nitrogen is shown using a thermogravimetric analyzer (TGA). Further information about the functional groups is exhibited through Fourier Transform infrared spectrometer (FTIR) and nuclear magnetic spectroscopy (NMR).

      • KCI등재

        Pb(II) ion adsorption by biomass-based carbonaceous fiber modified by the integrated oxidation and vulcanization

        Xiaoxiang Jiang,Dekui Shen 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.10

        Biomass-based activated carbonaceous fiber (ACF) was modified by nitric-acid oxidation under microwave heating (ACF-O) and then further treated by thioglycolic acid (ACF-S) to prepare carbon materials with high capability for the removal of Pb(II) ions. The physico-chemical properties of the original and modified ACF samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Zeta potential, Boehm titration, BET, Raman spectrum and X-ray photoelectron spectroscopy (XPS). It was found that modification treatments damage the pore and graphite crystalline structure of ACF, while the micropore structure is protected and extra oxygen-containing surface functional groups are grafted on its surface. The adsorption performance of the original and the modified ACF samples affected by adsorption conditions regarding to Pb(II) ion strength (10mg/L- 105mg/L), contact time (10min-120 min), pH value (2.5-6.5), and solvent temperature (15 oC-45 oC) was investigated through batch experiments. Compared to the maximum Pb(II) ion adsorption capacity of 75.24mg/g by ACF sample, the value was substantially improved by the integrated modification method (193.42mg/g for ACF-O and 209.21mg/g for ACF-S sample). The Biot number determined from the homogeneous surface diffusion model (HSDM) was between 1 and 100 for the original and modified ACF samples, suggesting that the adsorption process of Pb(II) ions is limited by both the surface diffusion and film mass transfer.

      • Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

        Xiaoxiang Wang,Yu-jie Yu,Lizhong Jiang,Zhi-wu Yu 국제구조공학회 2023 Steel and Composite Structures, An International J Vol.47 No.2

        The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

      • KCI등재

        Efficiently targeted therapy of glioblastoma xenograft via multifunctional biomimetic nanodrugs

        Zhipeng Yao,Xiaochun Jiang,Hong Yao,Yafeng Wu,Fan Zhang,Cheng Wang,Chenxue Qi,Chenhui Zhao,Zeyu Wu,Min Qi,Jia Zhang,Xiaoxiang Cao,Zhichun Wang,Fei Wu,Chengyun Yao,Songqin Liu,Shizhang Ling,Hongping Xi 한국생체재료학회 2022 생체재료학회지 Vol.26 No.4

        Background: Glioblastoma multiforme (GBM) is a fatal malignant primary brain tumor in adults. The therapeutic efficacy of chemotherapeutic drugs is limited due to the blood-brain barrier (BBB), poor drug targeting, and short biological half-lives. Multifunctional biomimetic nanodrugs have great potential to overcome these limitations of chemotherapeutic drugs. Methods: We synthesized and characterized a biomimetic nanodrug CMS/PEG-DOX-M. The CMS/PEG-DOX-M effectively and rapidly released DOX in U87 MG cells. Cell proliferation and apoptosis assays were examined by the MTT and TUNEL assays. The penetration of nanodrugs through the BBB and anti-tumor efficacy were investigated in the orthotopic glioblastoma xenograft models. Results: We showed that CMS/PEG-DOX-M inhibited cell proliferation of U87 MG cells and effectively induced cell apoptosis of U87 MG cells. Intracranial antitumor experiments showed that free DOX hardly penetrated the BBB, but CMS/PEG-DOX-M effectively reached the orthotopic ntracranial tumor through the BBB and significantly inhibited tumor growth. Immunofluorescence staining of orthotopic tumor tissue sections confirmed that nanodrugs promoted apoptosis of tumor cells. This study developed a multimodal nanodrug treatment system with the enhanced abilities of tumor-targeting, BBB penetration, and cancer-specific accumulation of chemotherapeutic drugs by combining chemotherapy and photothermal therapy. It can be used as a flexible and effective GBM treatment system and it may also be used for the treatment of other central nervous systems (CNS) tumors and extracranial tumors.

      • KCI등재

        Catalytic oxidation and capture of elemental mercury from simulated flue gas using Mn-doped titanium dioxide

        Hongmin Yang,Jingtao Zhi,Xianqun Yu,Jingjing Bao,Xiaoxiang Jiang 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.6

        Titanium dioxide (TiO2) and Mn-doped TiO2 (Mn(x)-TiO2) were synthesized in a sol-gel method and characterized by BET surface area analysis, X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). Gasphase elemental mercury (Hg0) oxidation and capture by the Mn-doped TiO2 catalyst was studied in the simulated flue gas in a fixed-bed reactor. The investigation of the influence of Mn loading, flue gas components (SO2, NO, O2, and H2O) showed that the Hg0 capture capability of Mn(x)-TiO2 was much higher than that of pure TiO2. The addition of Mn inhibits the grain growth of TiO2 and improves the porous structure parameters of Mn(x)-TiO2. Excellent Hg0 oxidation performance was observed with the catalyst with 10% of Mn loading ratio and 97% of Hg0 oxidation was achieved under the test condition (120 oC, N2/6%O2). The presence of O2 and NO had positive effect on the Hg0 removal efficiency, while mercury capture capacity was reduced in the presence of SO2 and H2O. XPS spectra results reveal that the mercury is mainly present in its oxidized form (HgO) in the spent catalyst and Mn4+ doped on the surface of TiO2 is partially converted into Mn3+ which indicates Mn and the lattice oxygen are involved in Hg0 oxidation reactions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼