RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Transgenic NfFeSOD Sedum alfredii plants exhibited profound growth impairments and better relative tolerance to long-term abiotic stresses

        Xiang Gao,Wen-Li Ai,Huan Gong,Li-Juan Cui,Bo-Xia Chen,Hong-Yi Luo,Zhong-Chun Zhang,Bao-Sheng Qiu 한국식물생명공학회 2016 Plant biotechnology reports Vol.10 No.2

        Transgenic research was preformed by transferring a cyanobacterial (Nostoc flagelliforme) iron superoxide dismutase gene (NfFeSOD) into heavy metal hyperaccumulator Sedum alfredii via Agrobacterium-mediated method. Beyond expectation, NfFeSOD-overexpressing S. alfredii plants exhibited profound impairments, including plant growth retardation, abnormal root architecture, and reduced leaf greenness, photosynthetic efficiency and metal accumulation efficiency. Although transgenic plants appeared physiologically sensitive to high temperature, a higher relative biomass growth was still observed under long-term high temperature and osmotic stresses. Further investigation found that reactive oxygen species (ROS) homeostasis of transgenic plants was significantly affected, being ~50 % reduction of H2O2 level relative to wild-type plants. Gene transcription including ROS responsive genes was overall attenuated in transgenic plants, being more significant at normal temperature than at high temperature. In addition, ascorbate peroxidase (APX) activity was increased nearly twofolds in transgenic plants as compared to wild-type control. It may be inferred that ectopic NfFeSOD overexpression gives rise to a substantial increase of APX activity and leads to a sharp reduction of H2O2 level, thus impairing basal ROS signaling and plant growth. Specific genetic background of S. alfredii may be responsible for this sharp reduction of H2O2 level induced by NfFeSOD overexpression. S. alfredii plant has acclimated to elevated levels of ROS induced by heavy metals in native habitats and should require high ROS levels for basal signaling. We thus suppose that a sustained disturbance of high basal ROS signaling in metal hyperaccumulators may instead incur very sensitive response and thus result in profound growth impairments.

      • SCIESCOPUSKCI등재

        Development and Characterization of a Novel Anti-idiotypic Monoclonal Antibody to Growth Hormone, Which Can Mimic Physiological Functions of Growth Hormone in Primary Porcine Hepatocytes

        Lan, Hai-Nan,Jiang, Hai-Long,Li, Wei,Wu, Tian-Cheng,Hong, Pan,Li, Yu Meng,Zhang, Hui,Cui, Huan-Zhong,Zheng, Xin Asian Australasian Association of Animal Productio 2015 Animal Bioscience Vol.28 No.4

        B-32 is one of a panel of monoclonal anti-idiotypic antibodies to growth hormone (GH) that we developed. To characterize and identify its potential role as a novel growth hormone receptor (GHR) agonist, we determined that B-32 behaved as a typical $Ab2{\beta}$ based on a series of enzyme-linked immunosorbent assay assays. The results of fluorescence-activated cell sorting, indirect immunofluorescence and competitive receptor binding assays demonstrated that B-32 specifically binds to the GHR expressed on target cells. Next, we examined the resulting signal transduction pathways triggered by this antibody in primary porcine hepatocytes. We found that B-32 can activate the GHR and Janus kinase (2)/signal transducers and activators of transcription (JAK2/STAT5) signalling pathways. The phosphorylation kinetics of JAK2/STAT5 induced by either GH or B-32 were analysed in dose-response and time course experiments. In addition, B32 could also stimulate porcine hepatocytes to secrete insulin-like growth factors-1. Our work indicates that a monoclonal anti-idiotypic antibody to GH (B-32) can serve as a GHR agonist or GH mimic and has application potential in domestic animal (pig) production.

      • KCI등재

        Development and Characterization of a Novel Anti-idiotypic Monoclonal Antibody to Growth Hormone, Which Can Mimic Physiological Functions of Growth Hormone in Primary Porcine Hepatocytes

        Hai-Nan Lan,Hai-Long Jiang,Wei Li,Tian-Cheng Wu,Pan Hong,Yu Meng Li,Hui Zhang,Huan-Zhong Cui,Xin Zheng 아세아·태평양축산학회 2015 Animal Bioscience Vol.28 No.4

        B-32 is one of a panel of monoclonal anti-idiotypic antibodies to growth hormone (GH) that we developed. To characterize and identify its potential role as a novel growth hormone receptor (GHR) agonist, we determined that B-32 behaved as a typical Ab2β based on a series of enzyme-linked immunosorbent assay assays. The results of fluorescence-activated cell sorting, indirect immunofluorescence and competitive receptor binding assays demonstrated that B-32 specifically binds to the GHR expressed on target cells. Next, we examined the resulting signal transduction pathways triggered by this antibody in primary porcine hepatocytes. We found that B-32 can activate the GHR and Janus kinase (2)/signal transducers and activators of transcription (JAK2/STAT5) signalling pathways. The phosphorylation kinetics of JAK2/STAT5 induced by either GH or B-32 were analysed in dose-response and time course experiments. In addition, B32 could also stimulate porcine hepatocytes to secrete insulin-like growth factors-1. Our work indicates that a monoclonal anti-idiotypic antibody to GH (B-32) can serve as a GHR agonist or GH mimic and has application potential in domestic animal (pig) production.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼