RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목

      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
          • 원문제공처
          • 등재정보
          • 학술지명
          • 주제분류
          • 발행연도
          • 작성언어
          • 저자

        오늘 본 자료

        • 오늘 본 자료가 없습니다.
        더보기
        • 무료
        • 기관 내 무료
        • 유료
        • KCI등재

          Effect of Zn2+ and F- Co-Modification on the Structure and Electrochemical Performance of Li4Ti5O12 Anode Material

          Aijia Wei,Wen Li,Lihui Zhang,Xiaohui Li,Xue Bai,Zhenfa Liu 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2017 NANO Vol.12 No.5

          Zn2+ and F- ions are successfully used to modify pure Li4Ti5O12 via a co-precipitation method followed by calcination at 400℃ for 5 h in an Ar atmosphere in order to further investigate the reaction mechanism of the fluoride modification process. Zn2+ and F- co-modified Li4Ti5O12 samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. After the modification process, no ZnF2 coating layer is formed on the surface of Li4Ti5O12, instead, F- ions react with Li4Ti5O12 to generate a new phase, composed of a small amount of anatase TiO2, rutile TiO2, LiF, and Zn2+ ions are suspected to form a ZnO coating layer on Li4Ti5O12 particles. The electrolyte reduction decomposition is suppressed in Zn2+ and F- co-modified Li4Ti5O12 due to the ZnO coating layer. 1 wt.% Zn2+ and F- co-modified Li4Ti5O12 exhibits the best rate capability, which leads to a charge capacity of 236.7, 227.8, 222.1, 202.7, 188.9 and 150.7 mAh g -1 at 0.2C, 0.5C, 1C, 3C, 5C and 10C, respectively, between 0 V and 3 V. Furthermore, 1 wt.% Zn2+ and F- comodified Li4Ti5O12 exhibits 96.0% charge capacity retention at 3C rate after 200 cycles, which is significantly higher than that of pure Li4Ti5O12 (78.4%).

        • In-situ PECVD-enabled graphene-V<sub>2</sub>O<sub>3</sub> hybrid host for lithium–sulfur batteries

          Song, Yingze,Zhao, Wen,Wei, Nan,Zhang, Li,Ding, Feng,Liu, Zhongfan,Sun, Jingyu Elsevier 2018 Nano energy Vol.53 No.-

          <P><B>Abstract</B></P> <P>Lithium–sulfur (Li–S) batteries have been regarded as promising candidates for current energy-storage technologies due to their remarkable advantages in energy density and theoretical capacity. However, one of the daunting challenges remained for advanced Li–S systems thus far deals with the synchronous suppression of polysulfide (LiPS) shuttle and acceleration of redox kinetics. Herein, a cooperative interface bridging adsorptive V<SUB>2</SUB>O<SUB>3</SUB> and conductive graphene is constructed <I>in-situ</I> by virtue of direct plasma-enhanced chemical vapor deposition (PECVD), resulting in the design of a novel V<SUB>2</SUB>O<SUB>3</SUB>-graphene hybrid host to synergize the LiPS entrapment and conversion. The redox kinetics and electrochemical performances of thus-derived cathodes were accordingly enhanced owing to the smooth adsorption-diffusion-conversion of LiPSs even at a sulfur mass loading of 3.7 mg cm<SUP>–2</SUP>. Such interfacial engineering offers us a valuable opportunity to gain insight into the comprehensive regulation of LiPS anchoring ability, electrical conductivity and ion diffusive capability in hybrid hosts on suppressing the LiPS shuttle and propelling the redox kinetics. Our devised PECVD route might pave a new route toward the facial and economic design of hetero-phased multi-functional hosts for high-performance Li–S systems.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Graphene-V<SUB>2</SUB>O<SUB>3</SUB> hybrid host was designed <I>in-situ</I> based on PECVD route. </LI> <LI> Thus-derived cathode showed a low capacity decay of merely 0.046% per cycle at 2 C after 1000 cycles. </LI> <LI> Cathodes with a relatively high sulfur mass loading (3.7 mg cm<SUP>–2</SUP>) were fabricated. </LI> <LI> The smooth adsorption-diffusion-conversion of polysulfides was thoroughly probed <I>via</I> experimental studies and DFT simulations. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

        • KCI등재

          Structure and Performances of xLiFePO4/C·(1 − x)Li3V2(PO4)3/C Cathode for Lithium-Ion Batteries by Using Poly(vinyl alcohol) as Carbon Source

          Chang-ling Fan,Wei-hua Zhang,Tao-tao Zeng,Ling-fang Li,Xiang Zhang,Shao-chang Han 대한화학회 2015 Bulletin of the Korean Chemical Society Vol.36 No.11

          Poly(vinyl alcohol), whose pyrolysis carbon possesses high conductivity of 8.88 × 10−1 S/cm, was used to synthesize xLiFePO4/C·(1 − x)Li3V2(PO4)3/C cathode. It was characterized by X-ray diffraction, scanning electron microscopy, conductivity, cyclic voltammetry, and galvanostatic charge and discharge experiments. Results show that LiFePO4/C and Li3V2(PO4)3/C coexists in the cathode. The particles sizes of 0.75LiFePO4/C·0.25Li3V2(PO4)3/C (x = 0.75) are much smaller than 100 nm due to the role of poly(vinyl alcohol). Its conductivity is 8.79 × 10−2 S/cm. The oxidative and reductive peaks in cyclic voltammetry are sharp and symmetrical. Their low potential gaps indicate that the extractions and insertions of lithium ion possess excellent reversibility. Its discharge capacities at 1 and 5 C are 141.1 and 100.1 mAh/g. The more Li3V2(PO4)3/C in cathode results in the deterioration of electrochemical performances due to its low theoretical capacity. It is concluded that poly(vinyl alcohol) is an effective carbon source in the preparation of xLiFePO4/C·(1 − x)Li3V2(PO4)3/C composite cathode with excellent performances.

        • KCI등재

          Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review

          Ye Zhang,Li Wang,Wei Sun,Yue-hua Hu,Honghu Tang 한국공업화학회 2020 Journal of Industrial and Engineering Chemistry Vol.81 No.-

          Recent years have seen rapid improvement of technology and large-scale applications of lithium-ionbatteries, which leads to an increasing market demand for lithium. Since the land lithium resources arediminishing drastically, the sources of lithium extraction have shifted to the large amount of waterresources containing salt-lake brines and seawater. Among the varieties of aqueous recovery approaches,membrane technology seems to have huge development potential and good application prospect. This isbecause the membrane technologies exhibit excellent Li/Mg separation selectivity, with low energyconsumption and green process owing to no addition of chemicals. The present work reviews the latestadvances in various membrane technologies, including nanofiltration membrane, electrodialysis,membrane capacitive deionization approaches, solid electrolyte electrolysis-based technology, etc. Therecent developments in positively charged nanofiltration membrane are discussed in terms of thepreparation methods, membrane properties, and Li/Mg separation coefficient. In addition, the effects ofseveral factors on electrodialysis for lithium extraction and relevant mechanisms in both simple andactual saline systems are discussed, including applied voltage, VC/VD, and coexisting ions. Theapplications of electrodialysis with novel selective membrane involving nanofiltration membrane as wellas solid electrolyte membrane and perspectives for further investigation are proposed.

        • SCOPUSKCI등재
        • KCI등재

          Review on State of Charge Estimation Methods for Li-Ion Batteries

          Xiaoqiang Zhang,Wei-ping Zhang,Hongyu Li,Mao Zhang 한국전기전자재료학회 2017 Transactions on Electrical and Electronic Material Vol.18 No.3

          The state of charge (SOC) is an important parameter in a battery-management system (BMS), and is very significantfor accurately estimating the SOC of a battery. Li-ion batteries boast of excellent performance, and can only remainat their best working state by means of accurate SOC estimation that gives full play to their performances and raisestheir economic benefits. This paper summarizes some measures taken in SOC estimation, including the dischargeexperiment method, the ampere-hour integral method, the open circuit voltage method, the Kalman filter method,the neural network method, and electrochemical impedance spectroscopy (EIS. The principles of the various SOCestimation methods are introduced, and their advantages and disadvantages, as well as the working conditionsadopted during these methods, are discussed and analyzed.

        • KCI등재

          A Mild Strategy to Strengthen Three Dimensional Graphene Aerogel for Supporting Sulfur as a Free‐standing Cathode in Lithium–Sulfur Batteries

          Yinglin Yan,Haichao Qin,Yiqi Wei,Rong Yang,Yunhua Xu,Liping Chen,Qiaole Li,Mangmang Shi 대한화학회 2018 Bulletin of the Korean Chemical Society Vol.39 No.5

          Recently, three dimensional graphene aerogel (3DGA) supported sulfur microparticles was used as a cathode material for lithium?sulfur batteries, which was considered as one of the most promising next generation rechargeable batteries due to its ultra?high theoretical specific capacity (1675 mAh/g). However, the mechanical strength of 3DGA remains an issue for further application. Herein, a strengthened 3DGA (S3DGA) was achieved by soaking in a low concentration ammonia solution at a relative low temperature. Then the S3DGA loaded sulfur (S3DGA?S) was cut into a round piece and directly used as a cathode without additional binders or conductive additives in Li?S batteries. The mechanical strength, microstructure, and electrochemical properties were investigated by compare with a 3DGA prepared without strengthen. The S3DGA?S presented good mechanical strength, excellent capacity retention, and lower electrochemical impedance.

        • Development of ligustrazine-loaded lipid emulsion: Formulation optimizatiom, characterization and biodistribution

          ( Lijun Wei ),( Nirmal Marasini ),( Gao Li ),( Chul Soon Yong ),( Jong Oh Kim ),( Qizhe Quan ) 영남대학교 약품개발연구소 2013 영남대학교 약품개발연구소 연구업적집 Vol.23 No.0

          Ligustrazine is a traditional Chinese medicine used to treat various cardiovascular and neurovascular complications. However, this compound exhibits rapid first-pass metabolism, a short biological half-life, low stability and potential vascular irritation that restrict its use for long-term therapy. The use of a lipid emulsion as a carrier for intravenous administration of ligustrazine might provide sustained and prolonged release, thereby reducing the frequency of administration and improving patient compliance. The main purpose of our study was to develop a highly stable and sterile optimal formulation of a ligustrazine lipid emulsion (LLE) and to evaluate its pharmacokinetic behavior and tissue distribution in rats. The final optimal formulation consisted of soybean oil (12.0%), oleic acid (0.6%), lecithin (1.0%), poloxamer 188 (0.6%) and glycerol (2.25%). The average particle size, polydispersity index (PDI), zeta-potential and pH of the final product were 215.0±2.5 nm, 0.076±0.033, -40.4±5.3 mV and 7.25±0.05, respectively. The LLE was stable for at least three months at room temperature. In vitro drug release studies of the LLE suggested a sustained release profile, which was further confirmed by in vivo pharmacokinetic studies in rats. The area under the drug concentration-time curve from 0 h to 10 h (AUC(0-10h)) for LLE was increased by 1.6-fold compared with that of the commercially available ligustrazine injection (LI), suggesting enhanced bioavailability from the lipid-based emulsion. Furthermore, a tissue distribution study showed significant improvement in the distribution pattern of ligustrazine with a higher AUC(0-180 min) observed in all tissues for LLE than for LI. In conclusion, LLE, with excellent stability, improved pharmacokinetics and tissue distribution, demonstrates great potential for the delivery of ligustrazine for clinical applications.ⓒ2012 Elsevier B.V.All rights reserved.

        • KCI등재

          Identification of candidate odorant‐degrading enzyme genes in the antennal transcriptome of Aphidius gifuensis

          Kang Zhi‐Wei,Liu Fang‐Hua,Xu Yong‐Yu,Cheng Jia‐Hui,Lin Xiao‐Li,Jing Xiang‐Feng,Tian Hong‐Gang,Liu Tong‐Xian 한국곤충학회 2021 Entomological Research Vol.51 No.1

          Odorant‐degrading enzymes (ODEs) have been found in insect antennae and play a critical role in signal chemical degradation once the message is conveyed. Significant progress has been made in characterizing ODEs in a variety of pests but very little is known in their natural enemies. We have carried out an antennae‐ and sex‐specific transcriptome of Aphidius gifuensis, a natural enemy of aphid, to identify the candidate ODEs. Based on the antennae‐ and sex‐specific transcriptome, a total of 100 putative ODEs were identified including one aldehyde oxidase (AOX), four alcohol dehydrogenases (ADs), eight UDP‐glucuronosyltransferases (UGTs), 45 cytochrome P450 (P450s), nine glutathione S‐transferases (GSTs) and 40 carboxylesterases (CCEs or CXEs). Additionally, we used RT‐qPCR to determine the expression profiles of these genes in tissues of both sexes. Based on the phylogenic analysis and tissue‐expression patterns, AgifEstE4, AgifCXE3, AgifCCE4, AgifCCE7, and AgifCCE18 were suggested as key ODEs in A. gifuensis. In addition, the female or male specifically enriched genes, such as AgifCCE17, AgifEstB1, AgifCYP18a1, AgifUGT2C2, were also considered to involve in the chemosensory processing in A. gifuensis. This study not only identified the candidate ODEs in A. gifuensis but also provided source for further exploration of the molecular mechanisms of chemical signal transductions in A. gifuensis, as well as other hymenopteran species.

        맨 위로 스크롤 이동